Vol. 108

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Low-Pass Negative Group Delay Modelling and Experimentation with Tri-Port Resistorless Passive Cross-Circuit

By Eric Jean Roy Sambatra, Antonio Jaomiary, Samuel Ngoho, Samar S. Yazdani, Nour Mohammad Murad, George Chan, and Blaise Ravelo
Progress In Electromagnetics Research M, Vol. 108, 39-51, 2022


This paper introduces an original study of low-pass (LP) negative group delay (NGD) circuit. The family of the proposed passive network cross-topology was rarely investigated in the literature. It acts as a tri-port passive circuit presenting a cross-shaped topology. The present study of tri-port passive circuit is originally based on S-matrix modelling. The identification method of LP-NGD function type is established. The considered passive tri-port topology is innovatively constituted by a resistorless LC-passive network. Thanks to the impedance 3-D matrix modelling, the cross-circuit S-parameters are analytically expressed. Then, the NGD analysis at very low-frequencies is presented. The LP-NGD behavior existence condition of the cross-circuit in function of the L and C components is established. The relevance of the tri-port NGD circuit theory is verified by a proof-of-concept of resistorless cross-circuit. Analytical modelling, simulation, and experimentation confirmed the LP-NGD design feasibility with NGD value of about -2 ns and 6.67 MHz cut-off frequency.


Eric Jean Roy Sambatra, Antonio Jaomiary, Samuel Ngoho, Samar S. Yazdani, Nour Mohammad Murad, George Chan, and Blaise Ravelo, "Low-Pass Negative Group Delay Modelling and Experimentation with Tri-Port Resistorless Passive Cross-Circuit," Progress In Electromagnetics Research M, Vol. 108, 39-51, 2022.


    1. Chu, S. and S. Wong, "Linear pulse propagation in an absorbing medium," Phys. Rev. Lett., Vol. 48, 738-741, 1982.

    2. Ségard, B. and B. Macke, "Observation of negative velocity pulse propagation," Phys. Lett. A, Vol. 109, 213-216, 1985.

    3. Macke, B. and B. Ségard, "Propagation of light-pulses at a negative group-velocity," Eur. Phys. J. D, Vol. 23, 125-141, 2003.

    4. Munday, J. N. and W. M. Robertson, "Observation of negative group delays within a coaxial photonic crystal using an impulse response method," Optics Communications, Vol. 273, No. 1, 32-36, 2007.

    5. Eleftheriades, G. V., O. Siddiqui, and A. K. Iyer, "Transmission line for negative refractive index media and associated implementations without excess resonators," IEEE Microw. Wireless Compon. Lett., Vol. 13, No. 2, 51-53, Feb. 2003.

    6. Siddiqui, O. F., M. Mojahedi, and G. V. Eleftheriades, "Periodically loaded transmission line with effective negative refractive index and negative group velocity," IEEE Trans. Antennas Propagat., Vol. 51, No. 10, 2619-2625, Oct. 2003.

    7. Bolda, L., R. Y. Chiao, and J. C. Garrison, "Two theorems for the group velocity in dispersive media," Phys. Rev. A, Gen. Phys., Vol. 48, No. 5, 3890-3894, Nov. 1993.

    8. Macke, B., B. Ségard, and F. Wielonsky, "Optimal superluminal systems," Phys. Rev. E, Vol. 72, 035601(R), 1-4, Sep. 2005.

    9. Kandic, M. and G. Bridges, "Asymptotic limits of negative group delay in active resonator-based distributed circuits," IEEE Trans. Circuits Syst. I: Regular Papers, Vol. 58, No. 8, 1727-1735, Aug. 2011.

    10. Kandic, M. and G. Bridges, "Negative group delay prototype filter based on cascaded second order stages implemented with Sallen-Key topology," Progress In Electromagnetics Research B, Vol. 94, 1-18, Sep. 2021.

    11. Markley, L. and G. V. Eleftheriades, "Quad-band negative-refractive-index transmission-line unit cell with reduced group delay," Electronics Letters, Vol. 46, No. 17, 1206-1208, Aug. 2010.

    12. Ahn, K.-P., R. Ishikawa, A. Saitou, and K. Honjo, "Synthesis for negative group delay circuits using distributed and second-order RC circuit con gurations," IEICE Trans. on Electronics, Vol. E92-C, No. 9, 1176-1181, 2009.

    13. Wu, C.-T.-M. and T. Itoh, "Maximally flat negative group-delay circuit: A microwave transversal filter approach," IEEE Trans. Microw. Theory Techn., Vol. 62, No. 6, 1330-1342, Jun. 2014.

    14. Zhang, T., R. Xu, and C. M. Wu, "Unconditionally stable non-foster element using active transversal-filter-based negative group delay circuit," IEEE Microw. Wireless Compon. Lett., Vol. 27, No. 10, 921-923, Oct. 2017.

    15. Qiu, L.-F., L.-S. Wu, W.-Y. Yin, and J.-F. Mao, "Absorptive bandstop filter with prescribed negative group delay and bandwidth," IEEE Microw. Wireless Compon. Lett., Vol. 27, No. 7, 639-641, Jul. 2017.

    16. Wang, Z., Y. Cao, T. Shao, S. Fang, and Y. Liu, "A negative group delay microwave circuit based on signal interference techniques," IEEE Microw. Wireless Compon. Lett., Vol. 28, No. 4, 290-292, Apr. 2018.

    17. Liu, G. and J. Xu, "Compact transmission-type negative group delay circuit with low attenuation," Electronics Letters, Vol. 53, No. 7, 476-478, Mar. 2017.

    18. Shao, T., Z. Wang, S. Fang, H. Liu, and S. Fu, "A compact transmission line self-matched negative group delay microwave circuit," IEEE Access, Vol. 5, No. 1, 22836-22843, Oct. 2017.

    19. Shao, T., S. Fang, Z. Wang, and H. Liu, "A compact dual-band negative group delay microwave circuit," Radio Engineering, Vol. 27, No. 4, 1070-1076, Dec. 2018.

    20. Chaudhary, G. and Y. Jeong, "Tunable center frequency negative group delay filter using coupling matrix approach," IEEE Microw. Wireless Compon. Lett., Vol. 27, No. 1, 37-39, 2017.

    21. Mitchell, M. W. and R. Y. Chiao, "Negative group delay and ``fronts'' in a causal system: An experiment with very low frequency bandpass amplifiers," Phys. Lett. A, Vol. 230, No. 3-4, 133-138, Jun. 1997.

    22. Mitchell, M. W. and R. Y. Chiao, "Causality and negative group-delays in a simple bandpass amplifier," Am. J. Phys., Vol. 66, 14-19, 1998.

    23. Wan, F., J. Wang, B. Ravelo, J. Ge, and B. Li, "Time-domain experimentation of NGD active RC-network cell," IEEE Trans. Circuits and Systems II: Express Briefs, Vol. 66, No. 4, 562-566, Apr. 2019.

    24. Ravelo, B., "Similitude between the NGD function and filter gain behaviours," Int. J. Circ. Theor. Appl., Vol. 42, No. 10, 1016-1032, Oct. 2014.

    25. Ravelo, B., "First-order low-pass negative group delay passive topology," Electron. Lett., Vol. 52, No. 2, 124-126, Jan. 2016.

    26. Ravelo, B., "High-pass negative group delay RC-network impedance," IEEE Trans. CAS II: Express Briefs, Vol. 64, No. 9, 1052-1056, Sept. 2017.

    27. Fenni, S., F. Haddad, K. Gorshkov, B. Tishchuk, A. Jaomiary, F. Marty, G. Chan, M. Guerin, W. Rahajandraibe, and B. Ravelo, "AC low-frequency characterization of stop-band negative group delay circuit," Progress In Electromagnetics Research C, Vol. 115, 261-276, 2021.

    28. Ravelo, B., O. Maurice, and S. Lalléchère, "Asymmetrical 1 : 2 Y-tree interconnects modelling with Kron-Branin formalism," Electronics Letters, Vol. 52, No. 14, 1215-1216, Jul. 2016.

    29. Ravelo, B., "Behavioral model of symmetrical multi-level T-tree interconnects," Progress In Electromagnetics Research B, Vol. 41, 23-50, 2012.

    30. Wan, F., Y. Liu, J. Nebhen, Z. Xu, G. Chan, S. Lalléchère, R. Vauche, W. Rahajandraibe, and B. Ravelo, "Bandpass negative group delay theory of fully capacitive Δ-network," IEEE Access, Vol. 9, No. 1, 62430-62445, Apr. 2021.

    31. Nebhen, J. and B. Ravelo, "Bandpass NGD analysis of symmetric lumped Y-tree via tensorial analysis of networks formalism," Journal of Electromagnetic Waves and Applications, Vol. 35, No. 16, 2125-2140, 2021.

    32. Ravelo, B., F. Wan, J. Nebhen, G. Chan, W. Rahajandraibe, and S. Lalléchère, "Bandpass NGD TAN of symmetric H-tree with resistorless lumped-network," IEEE Access, Vol. 9, 41383-41396, Mar. 2021.

    33. Li, N., F. Wan, and B. Ravelo, "Analytical modelling of H-shape distributed topology with bandpass negative group delay behaviour," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 9, 1-9, Sept. 2020.

    34. Ahn, K.-P., R. Ishikawa, and K. Honjo, "Group delay equalized UWB InGaP/GaAs HBT MMIC amplifier using negative group delay circuits," IEEE Trans. Microw. Theory Techn., Vol. 57, No. 9, 2139-2147, Sept. 2009.

    35. Ravelo, B., S. Lalléchère, A. Thakur, A. Saini, and P. Thakur, "Theory and circuit modelling of baseband and modulated signal delay compensations with low- and band-pass NGD effects," Int. J. Electron. Commun. (AEÜ), Vol. 70, No. 9, 1122-1127, Sept. 2016.

    36. Groenewold, G., "Noise and group delay in active filters," IEEE Trans. CAS I: Regular Papers, Vol. 54, No. 7, 1471-1480, Jul. 2007.

    37. Hwang, M.-E., S.-O. Jung, and K. Roy, "Slope interconnect effort: Gate-interconnect interdependent delay modeling for early CMOS circuit simulation," IEEE Trans. CAS I, Vol. 56, No. 7, 1428-1441, Jul. 2009.