Vol. 107
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-01-16
Design of Substrate Integrated Folded Waveguide h -Plane Horn Antenna Array with Simultaneous Omnidirectional and Directional Radiation Characteristics
By
Progress In Electromagnetics Research M, Vol. 107, 141-154, 2022
Abstract
A compact substrate integrated folded waveguide (SIFW) H-plane horn antenna array with simultaneous omnidirectional and directional radiation characteristics for potential utilization to high-speed wireless communication is presented in this article. The realization of the proposed design has been accomplished by placing the apertures of nine exponentially tapered SIFW H-plane horns towards the circumference of a cylindrical substrate with an angular separation of 40˚ between the horns. Every horn flaring includes a column of three slots. Centre probe feed technique has been used to excite the antenna. The radiation of the field by the horn apertures and through the slots of the horns flaring, respectively, results in an omnidirectional and a directional radiation pattern at 13.8 GHz and 18.42 GHz, with the gain of 7 dBi and 10.92 dBi. The proposed antenna has performed well and is in good agreement between simulation and measurement. The dimension of the antenna is 37.3 mm (diameter) × 1 mm (height) (1.710×0.0460 at 13.8 GHz and 2.29λ0×0.061λ0 at 18.42 GHz). SIFW technology makes low profile antenna. The proposed design can be a promising option to be used as a low-profile antenna for high-speed wireless communication.
Citation
Wriddhi Bhowmik, and Shweta Srivastava, "Design of Substrate Integrated Folded Waveguide h -Plane Horn Antenna Array with Simultaneous Omnidirectional and Directional Radiation Characteristics," Progress In Electromagnetics Research M, Vol. 107, 141-154, 2022.
doi:10.2528/PIERM21121302
References

1. Vannucci, G. and R. S. Roman, "Measurement results on indoor radio frequency re-use at 900 MHz and 18-GHz," IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, 308-314, Boston, MA, 1992.

2. Rappaport, T. S., Wireless Communications: Principles and Practice, Prentice-Hall, New Jersey, NJ, 2007.

3. Jung, J., W. Choi, and J. Choi, "A small wideband microstrip-fed monopole antenna," IEEE Microwave and Wireless Component Letters, Vol. 15, 703-705, 2005.
doi:10.1109/LMWC.2005.856834

4. Tseng, C.-F., C.-L. Huang, and C.-H. Hsu, "Microstrip fed monopole antenna with a shorted parasitic element for wideband application," Progress In Electromagnetics Research Letters, Vol. 7, 115-125, 2009.
doi:10.2528/PIERL09021206

5. Luk, K. M. and S. H. Wong, "A printed high-gain monopole antenna for indoor wireless LANs," Microwave and Optical Technology Letters, Vol. 41, 177-180, 2004.
doi:10.1002/mop.20085

6. Xu, H. X., G. M. Wang, M. Q. Qi, and Z. M. Xu, "A metamaterial antenna with frequency-scanning omnidirectional radiation patterns," Applied Physics Letters, Vol. 101, 173501-1-5, 2012.

7. Xu, H.-X., G.-M. Wang, Y.-Y. Lv, M.-Q. Qi, X. Gao, and S. Ge, "Multifrequency monopole antennas by loading metamaterial transmission lines with dual-shunt branch circuit," Progress In Electromagnetics Research, Vol. 137, 703-725, 2013.
doi:10.2528/PIER12122409

8. Xu, H.-X., G.-M. Wang, and M.-Q. Qi, "A miniaturized triple-band metamaterial antenna with radiation pattern selectivity and polarization diversity," Progress In Electromagnetics Research, Vol. 137, 275-292, 2013.
doi:10.2528/PIER12081008

9. Quan, X. L., R. L. Li, Y. H. Cui, and M. M. Tentzeris, "Analysis and design of a compact dual band directional antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 547-550, 2012.
doi:10.1109/LAWP.2012.2199458

10. Nasimuddin and Z. N. Chen, "Wideband directional microstrip antennas fed by CPW loop combination," IEEE International Conferenceon Ultra-Wideband, 700-702, Singapore, 2007.

11. Majid, H. A., M. K. A. Rahim, M. R. Hamid, and M. F. Ismail, "Frequency reconfigurable microstrip patch-slot antenna with directional radiation pattern," Progress In Electromagnetics Research, Vol. 144, 319-328, 2014.
doi:10.2528/PIER13102901

12. Xiong, H. and J. S. Hong, "A Wideband endfire directional microstrip antenna with metamaterials," IETE Journal of Research, Vol. 59, 150-155, 2014.
doi:10.4103/0377-2063.113034

13. Balani, C. A., Antenna Theory: Analysis & Design, Wiley, New York, NY, 2005.

14. Xu, F. and K. Wu, "Guided-wave and leakage characteristics of substrate integrated waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, 66-73, 2005.
doi:10.1109/TMTT.2004.839303

15. Wang, H., D. G. Fang, B. Zhang, and W. Q. Che, "Dielectric loaded substrate integrated waveguide (SIW) H-plane horn antennas," IEEE Transactions on Antennas and Propagation, Vol. 58, 640-647, 2010.
doi:10.1109/TAP.2009.2039298

16. Che, W., B. Fu, P. Yao, and Y. L. Chao, "Substrate integrated waveguide horn antenna with dielectric lens," Microwave and Optical Technology Letters, Vol. 49, 168-170, 2007.
doi:10.1002/mop.22086

17. Gong, L., K. Y. Chan, and R. Ramer, "Substrate integrated waveguide H-plane horn antenna with improved front-to-back ratio and reduced side lobe level," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1835-1838, 2016.
doi:10.1109/LAWP.2016.2538823

18. Tang, Y., Z. Wang, L. Xia, and P. Chen, "A novel high gain K-band H-plane SIW horn antenna using dielectric loading," Asia-Pacific Microwave Conference, 372-374, Sendai, Japan, 2014.

19. Luo, Y. and J. Bornemann, "Substrate integrated waveguide horn antenna on thin substrate with back-lobe suppression and its application to arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2622-2625, 2017.
doi:10.1109/LAWP.2017.2736445

20. Agrawal, T. and S. Srivastava, "Ku band pattern reconfigurable substrate integrated waveguide leaky wave horn antenna," Int. J. of Electron. and Commun. (AEÜ), Vol. 87, 70-75, 2018.
doi:10.1016/j.aeue.2018.01.022

21. Park, W. B., J. M. Lee, Y. M. Park, and K. C. Hwang, "A 18-40 GHz substrate integrated waveguide (SIW) H-plane horn antenna," IEEE Transactionson Antennas and Propagation, Vol. 66, 6322-6327, 2018.
doi:10.1109/TAP.2018.2862245

22. Choudhury, S., A. Mohan, P. K. Mishra, and D. Guha, "Reconfigurable dual-fed horn with pattern switchability realized by SIW technology," IEEE Transactions on Antennas and Propagation, Vol. 68, 4072-4076, 2020.
doi:10.1109/TAP.2019.2949710

23. Sun, L., B. Sun, J. Yuan, W. Tang, and H. Wu, "Low profile, quasi omnidirectional, substrate integrated waveguide (SIW) multi-horn antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 818-821, 2015.
doi:10.1109/LAWP.2015.2476346

24. Guo, J. L., C. Li, Y. H. Yang, and B. H. Sun, "Low-profile omnidirectional circularly polarized antenna based on substrate integrated waveguide technology," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 28, 1-8, 2018.

25. Bhowmik, W. and S. Srivastava, "Design of compact omnidirectional substrate integrated waveguide exponentially tapered multiple H-plane horn antenna," Int. J. of Electron. and Commun. (AEÜ), Vol. 108, 29-35, 2019.
doi:10.1016/j.aeue.2019.05.036

26. Khalichi, B., S. Nikmehr, and A. Pourziad, "Development of novel wideband H-plane horn antennas by employing asymmetrical slots based on SIW technology," Int. J. of Electron. and Commun. (AEÜ), Vol. 69, 1374-1380, 2015.
doi:10.1016/j.aeue.2015.06.004

27. Bhowmik, W., S. Srivastava, and L. Prasad, "Design of multiple beam forming antenna system using substrate integrated folded waveguide (SIFW) technology," Progress In Electromagnetics Research B, Vol. 60, 15-34, 2014.
doi:10.2528/PIERB14022603

28. Grigoropoulos, N., B. S. Izquierdo, and P. R. Young, "Substrate integrated folded waveguides (SIFW) and filters," IEEE Microwave and Wireless Component Letters, Vol. 15, 829-831, 2005.
doi:10.1109/LMWC.2005.860027

29. Zhai, G. H., W. Hong, K. Wu, J. X. Chen, P. Chen, J. Wei, and H. J. Tang, "Folded half mode substrate integrated waveguide 3 dB coupler," IEEE Microwave and Wireless Component Letters, Vol. 18, 512-514, 2008.
doi:10.1109/LMWC.2008.2001006

30. Grigoropoulos, N. and P. R. Young, "Compact folded waveguides," 34th European Microwave Conference, 973-9176, Amsterdam, Netherlands, 2004.

31. Kumari, S., V. R. Gupta, and S. Srivastava, "A novel feeding technique for folded substrate integrated waveguide," Int. J. of Electron. and Commun. (AEÜ), Vol. 138, 1-6, 2021.
doi:10.1016/j.aeue.2021.153852

32. Bhowmik, W., S. Srivastava, and L. Prasad, "Design of a low cost 4 × 4 butler matrix fed antenna array partially loaded with substrate integrated waveguide (SIW)," International Journal of Microwave and Optical Technology, Vol. 9, 227-236, 2014.

33. Djerafi, T., A. Doghri, and K. Wu, Handbook of Antenna Technologies, Springer, Singapore, 2015.