Vol. 112
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-07-28
A 2-d DOA Estimation Algorithm for L-Shaped Array with Improved Computational Efficiency
By
Progress In Electromagnetics Research M, Vol. 112, 115-125, 2022
Abstract
A high-precision and high-efficiency reduced-dimension direction of arrival (DOA) estimation algorithm based on an L-shaped array for the problems of large computation and high cost of achieving two-dimensional (2D) DOA estimation by 2D multiple signal classification (MUSIC) algorithm under various complex arrays. The algorithm makes full use of the structural characteristics of the L-shaped array to decompose the uniform L-shaped array into two uniform linear arrays. These two arrays are respectively searched in one-dimension (1D) to estimate the angles between the source and the x-axis and y-axis, and then the 2D DOA estimation is obtained according to the geometric relationship, which greatly reduces the amount of computation. Furthermore, the algorithm increases the utilization of noise subspace information, which not only realizes the automatic pairing of direction angle and elevation angle, but also improves the estimation accuracy. In order to further reduce the complexity and improve the estimation performance, this paper also puts forward the root finding method instead of 1D search, and uses a fast angle matching method to accurately match angles. Simulation results show the feasibility of the proposed algorithm.
Citation
Jie Yang, and Hu He, "A 2-d DOA Estimation Algorithm for L-Shaped Array with Improved Computational Efficiency," Progress In Electromagnetics Research M, Vol. 112, 115-125, 2022.
doi:10.2528/PIERM22041602
References

1. Fulton, C., J. L. Salazar, Y. Zhang, et al. "Cylindrical polarimetric phased array radar: Beamforming and calibration for weather applications," IEEE Transactions on Geoscience and Remote Sensing, Vol. 55, No. 5, 2827-2841, May 2017.
doi:10.1109/TGRS.2017.2655023

2. Jiang, J., Z. Sun, F. Duan, et al. "Disguised bionic sonar signal waveform design with its possible camou age application strategy for underwater sensor platforms," IEEE Sensors Journal, Vol. 18, No. 20, 8436-8449, Oct. 2018.

3. Yazdani, S., S. Fallet, and J.-M. Vesin, "A novel short-term event extraction algorithm for biomedical signals," IEEE Transactions on Biomedical Engineering, Vol. 65, No. 4, 754-762, Apr. 2018.
doi:10.1109/TBME.2017.2718179

4. Zou, D., W. Meng, S. Han, K. He, and Z. Zhang, "Toward ubiquitous LBS: Multi-radio localization and seamless positioning," IEEE Wireless Communications, Vol. 23, No. 6, 107-113, Dec. 2016.
doi:10.1109/MWC.2016.1500177WC

5. Schmidt, R., "Multiple emitter location and signal parameter estimation," IEEE Transactions on Antennas and Propagation, Vol. 34, No. 3, 276-280, Mar. 1986.
doi:10.1109/TAP.1986.1143830

6. Roy, R. and T. Kailath, "ESPRIT-estimation of signal parameters via rotational invariance techniques," IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 37, No. 7, 984-995, Jul. 1989.
doi:10.1109/29.32276

7. Sun, F., P. Lan, and G. Zhang, "Reduced dimension based two-dimensional DOA estimation with full DOFs for generalized co-prime planar arrays," Sensors, Vol. 18, No. 6, 1-10, 2018.
doi:10.1109/JSEN.2018.2792888

8. Wu, Y. T., G. S. Liao, and H. C. So, "A fast algorithm for 2-D direction-of-arrival estimation," Signal Processing, Vol. 83, No. 8, 1827-1831, 2003.
doi:10.1016/S0165-1684(03)00118-X

9. Strobach, P., "Two-dimensional equirotational stack subspace fitting with an application to uniform rectangular arrays and ESPRIT," IEEE Transactions on Signal Processing, Vol. 48, No. 7, 1902-1914, Jul. 2000.
doi:10.1109/78.847777

10. Goossens, R. and H. Rogier, "A hybrid UCA-RARE/root-MUSIC approach for 2-D direction of arrival estimation in uniform circular arrays in the presence of mutual coupling," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 3, 841-849, Mar. 2007.
doi:10.1109/TAP.2007.891848

11. Sun, F., P. Lan, and G. Zhang, "Reduced dimension based two-dimensional DOA estimation with full DOFs for generalized co-prime planar arrays," Sensors, Vol. 18, No. 6, 1725-1725, 2018.
doi:10.3390/s18061725

12. Shi, F., "Two dimensional direction-of-arrival estimation using compressive measurements," IEEE Access, Vol. 7, 20863-20868, 2019.
doi:10.1109/ACCESS.2019.2892085

13. Zhao, C., X. Mao, M. Chen, and C. Yu, "Continuous approximation based dimension-reduced estimation for arbitrary sampling," IEEE Signal Processing Letters, Vol. 27, 1080-1084, 2020.
doi:10.1109/LSP.2020.3001757

14. Xiong, X., M. Zhang, H. Shi, et al. "SBL-based 2-D DOA estimation for L-shaped array with unknown mutual coupling," IEEE Access, Vol. 9, 70071-70079, May 2021.
doi:10.1109/ACCESS.2021.3077759

15. Zhang, Y., Y. Sun, G. Zhang, X. Wang, and Y. Tao, "Crosscorrelation and DOA estimation for L-shaped array via decoupled atomic norm minimization," Wireless Communications and Mobile Computing, Mar. 2021.

16. Hua, Y., T. K. Sarkar, and D. D. Weiner, "An L-shaped array for estimating 2-D directions of wave arrival," IEEE Transactions on Antennas and Propagation, Vol. 39, No. 2, 143-146, Feb. 1991.
doi:10.1109/8.68174

17. Tayem, N. and H. M. Kwon, "L-shape 2-dimensional arrival angle estimation with propagator method," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 5, 1622-1630, May 2005.
doi:10.1109/TAP.2005.846804

18. Shu, T., X. Liu, and J. Lu, "Comments on `L-shape 2-dimensional arrival angle estimation with propagator method'," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 5, 1502-1503, 2008.
doi:10.1109/TAP.2008.922891

19. Liang, J. and D. Liu, "Joint elevation and azimuth direction finding using L-shaped array," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 6, 2136-2141, Jun. 2010.
doi:10.1109/TAP.2010.2046838

20. Gu, J. and P. Wei, "Joint SVD of two cross-correlation matrices to achieve automatic pairing in 2-D angle estimation problems," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 553-556, 2007.
doi:10.1109/LAWP.2007.907913

21. Gong, P., X. Zhang, and W. Zheng, "Unfolded coprime L-shaped arrays for two-dimensional direction of arrival estimation," International Journal of Electronics, Vol. 105, No. 9, 1501-1519, 2018.
doi:10.1080/00207217.2018.1460874

22. Zhang, Z., Y. Guo, Y. Huang, and P. Zhang, "A 2-D DOA estimation method with reduced complexity in unfolded coprime L-shaped array," IEEE Systems Journal, Vol. 15, No. 1, 407-410, Mar. 2021.
doi:10.1109/JSYST.2019.2948089

23. Tao, H., J. Xin, J. Wang, N. Zheng, and A. Sano, "Two-dimensional direction estimation for a mixture of noncoherent and coherent signals," IEEE Transactions on Signal Processing, Vol. 63, No. 2, 318-333, Jan. 2015.
doi:10.1109/TSP.2014.2369004