Vol. 13
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-06-26
Broadband Measurement of Complex Permittivity of Composite at Microwave Frequencies Using Scalar Scattering Parameters
By
Progress In Electromagnetics Research M, Vol. 13, 53-68, 2010
Abstract
A shielded, conductor-backed coplanar waveguide technique is used to determine the complex permittivity and loss tangent of nano magnetic composite materials over X-band. The test composite material is synthesized by reinforcing cobalt ferrite particles with average crystallite diameter 7.36nm in low density polyethylene matrix with 2% and 4% volume fractions. The complex permittivity for low density polyethylene matrix and the composite samples, evaluated from the present technique at 9.887 GHz, are verified with cavity perturbation technique resonating at the same frequency. A new mathematical approach, using element-to-element correspondence of the ABCD matrix, is applied to calculate the complex propagation constant. The formulation facilitates evaluation of complex propagation constant over the test frequency range using scalar scattering parameters without altering the coplanar waveguide geometry. The mathematical formulation is verified by performing permittivity measurements for air over the X-band.
Citation
Subasit Borah, and Nidhi Saxena Bhattacharyya, "Broadband Measurement of Complex Permittivity of Composite at Microwave Frequencies Using Scalar Scattering Parameters," Progress In Electromagnetics Research M, Vol. 13, 53-68, 2010.
doi:10.2528/PIERM10051203
References

1. Hajian, M., K. T. Mathew, and L. P. Ligthart, "Measurement of complex permittivity with waveguide resonator using perturbation technique," Microwave and Optical Technology Letters, Vol. 21, 269, 1999.
doi:10.1002/(SICI)1098-2760(19990520)21:4<269::AID-MOP11>3.0.CO;2-U

2. Murthy, V. R. K., S. Sunderam, and B. Viswanathan, Microwave Materials, 100, Narosa Publishing House, 1990.

3. Chen, L. F., C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, "Microwave Electronics Measurement and Material Characterization," John Willey and Sons, West Sussex, England, 2004, 37.

4. Yamashita, E., K. Atsuki, and T. Hirahata, "Microstrip dispersion in a wide frequency range," IEEE Trans. Microw. Theory Tech., Vol. 29, No. 6, 610-611, 1981.
doi:10.1109/TMTT.1981.1130403

5. Yamashita, E., K. Atsuki, and T. Ueda, "An approximate dispersion formula of microstrip lines for computer aided design of microwave integrated circuits," IEEE Trans. Microw. Theory Tech., Vol. 27, No. 12, 1036-1038, 1979.
doi:10.1109/TMTT.1979.1129787

6. Krupka, J., "Frequency domain complex permittivity measurements at microwave frequencies," Meas. Sci. Technol., Vol. 17, 55-70, Apr. 2006.
doi:10.1088/0957-0233/17/6/R01

7. Kang, B., J. Cho, C. Cheon, and Y. Kwon, "Nondestructive measurement of complex permittivity and permeability using multilayered coplanar waveguide structures," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 5, 381-383, May 2005.
doi:10.1109/LMWC.2005.847738

8. Hinojosa, J., "S-parameter broadband measurements on-coplanar and fast extraction of the substrate intrinsic properties," IEEE Microw. Wireless Compon. Lett., Vol. 11, No. 2, 80-82, Feb. 2001.
doi:10.1109/7260.914309

9. Queffelec, P., P. Gelin, J. Gieraltowski, and J. Loaec, "A microstrip device for the broadband simultaneous measurement of complex permeability and permittivity ," IEEE Trans. Magn., Vol. 30, No. 2, 224-231, Mar. 1994.
doi:10.1109/20.312262

10. Ghodgaonkar, D. K., V. V. Varadan, and V. K. Varadan, "Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies," IEEE Trans. Instrum. Meas., Vol. 39, No. 2, 387-394, Apr. 1990.
doi:10.1109/19.52520

11. Mellegol, S. and P. Queffelec, "Extension and error analysis of the microstrip transmission-line method for the broad-band measurement of the permeability tensor," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 3, 1065-1075, Mar. 2006.
doi:10.1109/TMTT.2005.864132

12. Bahadoor, A., Y. Wang, and M. Afsar, "Complex permittivity and permeability of hexaferrite and carbonyl iron powders using rectangular waveguide technique from 8.0-40.0 GHz," Dig. IEEE Int. Magnetics Conf. INTERMAG Asia, 891-892, Nagoya Congress Center, Japan, 2005.

13. Chen, L. F., C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, "Microwave Electronics Measurement and Material Characterization," 291, John Willey and Sons, West Sussex, England, 2004.

14. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, 33-36, 1974.
doi:10.1109/PROC.1974.9382

15. Barry, W., "A broad-band automated stripline technique for the simultaneous measurement of complex permittivity and permeability ," IEEE Trans. Microw. Theory Tech., Vol. 34, No. 1, 80-84, Jan. 1986.
doi:10.1109/TMTT.1986.1133283

16. Hu, J., A. Sligar, C. H. Chang, S. L. Lu, and R. K. Settaluri, "A grounded coplanar waveguide technique for microwave measurement of complex permittivity and permeability," IEEE Trans. Magn., Vol. 42, No. 7, 1929-1931, Jul. 2006.

17. Azaro, R., F. Caramanica, and G. Oliveri, "Determination of the complex permittivity values of planar dielectric substrates by means of a multifrequency PSO-based technique," Progress In Electromagnetics Research M, Vol. 10, 83-91, 2009.
doi:10.2528/PIERM09112901

18. Ocera, A., M. Dionigi, E. Fratticcioli, and R. Sorrentino, "A novel technique for complex permittivity measurement based on a planar four-port device," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 6, 2568-2575, Jun. 2006.
doi:10.1109/TMTT.2006.872914

19. Goodenough, J. B., Magnetism and Chemical Bond, 214, Willey, New York, 1963.

20. Altunyurt, N., M. Swaminathan, P. M. Raj, and V. Nair, "Antenna miniaturization using magneto-dielectric substrates," Proc. IEEE Electronics Components and Technol. Conf., 801-808, Sep. 2009.

21. Mosallaei, H. and K. Sarabandi, "Magneto-dielectrics in electromagnetics: concept and applications," IEEE Trans. on Antennas and Propagation, Vol. 52, No. 6, 1558-1567, Jun. 2004.
doi:10.1109/TAP.2004.829413

22. Pozar, D. M. and Microwave Engineering, , 206, John Willey and Sons, 1998.

23. Wolff, I., Coplanar Microwave Integrated Circuits, 12, John Willey and Sons, 2006.

24. Ghione, G. and C. U. Naldi, "Coplanar waveguides for MMIC application: E®ect of upper shielding, conductor backing, finite-extent ground planes, and line-to-line coupling," IEEE Trans. Microwave Theory Tech., Vol. 35, No. 3, 260-267, 1987.
doi:10.1109/TMTT.1987.1133637

25. Wolff, I., Coplanar Microwave Integrated Circuits, 217, John Willey and Sons, 2006.

26. Wolff, I., "Coplanar Microwave Integrated Circuits," 20, John Willey and Sons, 2006.

27. Simons, R. N., Coplanar Waveguide Circuits, Components and Systems, 94, John Willey and Sons, 2001.

28. Bedair, S. S. and I. Wolff, "Fast, accurate and simple approximate analytic formulas for calculating the parameters of supported coplanar waveguides for MMIC's," IEEE Trans. Microw. Theory Tech., Vol. 40, No. 1, 41-48, Jan. 1992.
doi:10.1109/22.108321

29. Hilberg, W., "From approximation to exact relations for characteristic impedances," IEEE Trans. Microw. Theory Tech., Vol. 17, No. 5, 259-265, 1969.
doi:10.1109/TMTT.1969.1126946

30. Deka, J. R., N. S. Bhattacharyya, and S. Bhattacharyya, "Development of low cost automated PC-based insertion loss measurement setup using a simple source and detector in X-band ," IETE Tech. Rev., Vol. 22, 425, 2005.

31. Borah, S. and N. S. Bhattacharyya, "Synthesis and characterization of reduced size ferrite reinforced polymer composites," AIP Proc. Int. Conf. on Magnetic Materials, (Kolkata, India, Dec. 2007), Vol. 1003, 261-263, 2008.

32. Wu, M., X. Yao, and L. Zhang, "An improved coaxial probe technique for measuring microwave permittivity of thin dielectric materials," Meas. Sci. Technol., Vol. 11, 1617-1622, 2000.
doi:10.1088/0957-0233/11/11/311

33. Griffiths, D. J., Introduction to Electrodynamics, 398-402, Prentice-Hall of India Pvt. Ltd., 1999.

34. Todd, M. G. and F. G. Shi, "Complex permittivity of composite systems: A comprehensive interphase approach," IEEE Trans. on Diel. and Elect. Insul., Vol. 12, No. 3, 601-611, Jun. 2005.
doi:10.1109/TDEI.2005.1453466

35. Ku, H. S., J. A. R. Ball, E. Siores, and B. Horsfield, "Microwave processing and permittivity measurement of thermoplastic composites at elevated temperature," Journal of Materials Processing Technology, Vol. 89-90, 419-424, 1999.
doi:10.1016/S0924-0136(99)00018-7