Vol. 14
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-09-16
Broadening of Omnidirectional Photonic Band Gap in Si-Based One Dimensional Photonic Crystals
By
Progress In Electromagnetics Research M, Vol. 14, 101-111, 2010
Abstract
A simple design of one dimensional gradual stacked photonic crystal (GSPC) structure has been proposed. The proposed structure consists of a periodic array of alternate layers of SiO2 and Si as the materials of low and high refractive indices respectively. The structure considered here has three stacks of periodic structures with five layers each. The lattice period of successive stack is increased by a certain multiple (say gradual constant, γ) of the lattice period of the just preceding stack. For numerical computation, the method of transfer matrix method (TMM) has been employed. It is found that such a structure has wider reflection bands in comparison to a conventional dielectric PC structure, and the width of the omni-directional reflection (ODR) bands can be enlarged by increasing the value of the gradual constant. Hence, a GSPC structure can be used as a broadband omnidirectional reflector, and the bandwidth of omni-directional gaps can be tuned to a desired wavelength region by choosing appropriate value of γ.
Citation
Vipin Kumar Khundrakpam Saratchandra Singh Sudesh Kumar Singh Sant Ojha , "Broadening of Omnidirectional Photonic Band Gap in Si-Based One Dimensional Photonic Crystals," Progress In Electromagnetics Research M, Vol. 14, 101-111, 2010.
doi:10.2528/PIERM10062807
http://www.jpier.org/PIERM/pier.php?paper=10062807
References

1. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059

2. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, 2486-2489, 1987.
doi:10.1103/PhysRevLett.58.2486

3. Jonnopoulos, J. D., P. Villeneuve, and S. Fan, "Photonic crystals: Putting a new twist on light," Nature, Vol. 386, 143-149, 1997.
doi:10.1038/386143a0

4. Xu, K. Y., X. Zheng, C. L. Li, and W. L. She, "Design of omnidirectional and multiple channeled filters using one-dimensional photonic crystals containing a defect layer with a negative refractive index material," Phys. Rev. E, Vol. 71, 066604, 2005.
doi:10.1103/PhysRevE.71.066604

5. Singh, S. K., J. P. Pandey, K. B. Thapa, and S. P. Ojha, "Some new band gaps and defect modes of one dimensional photonic crystals composed of metamaterials," Solid State Commun., Vol. 143, No. 217, 2007.

6. St. J. Russell, P., S. Treadwell, and P. J. Roberts, "Full photonic bandgaps and spontaneous emission control in 1D multilayer dielectric structures," Opt. Commun., Vol. 160, 66-71, 1999.
doi:10.1016/S0030-4018(98)00659-2

7. Kumar, V., K. S. Singh, and S. P. Ojha, "Band structures, reflection properties and abnormal behaviour of one-dimensional plasma photonic crystals," Progress In Electromagnetics Research M, Vol. 9, 227-241, 2009.
doi:10.2528/PIERM09101701

8. Pandey, G. N., K. B. Thapa, S. K. Srivastava, and S. P. Ojha, "Band structures and abnormal behaviour of one dimensional photonic crystal containing negative index materials," Progress In Electromagnetics Research M, Vol. 2, 15-36, 2008.
doi:10.2528/PIERM08021501

9. Dowling, J. P., "Mirror on the wall: You're omnidirectional after all?," Science, Vol. 282, 1841-1842, 1998.
doi:10.1126/science.282.5395.1841

10. Yablonovitch, E., "Engineered omnidirectional external-reflectivity spectra from one-dimensional layered interference filters," Opt. Lett., Vol. 23, 1648-1649, 1998.
doi:10.1364/OL.23.001648

11. Chigrin, D. N., A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, "Observation of total omnidirectional reflection from a one dimensional dielectric lattice," Appl. Phys. A: Mater. Sci. Process., Vol. 68, 25-28, 1999.

12. Fink, Y., J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science, Vol. 282, 1679-1682, 1998.
doi:10.1126/science.282.5394.1679

13. Lusk, D., I. Abdulhalim, and F. Placido, "Omnidirectional reflection from Fibonacci quasi-periodic one-dimensional photonic crystal," Opt. Commun., Vol. 198, 273-279, 2001.
doi:10.1016/S0030-4018(01)01531-0

14. Ibanescu, M., Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, "An all-dielectric coaxial waveguide," Science, Vol. 289, 415-419, 2000.
doi:10.1126/science.289.5478.415

15. Srivastava, S. K. and S. P. Ojha, "Omnidirectional reflection bands in one-dimensional photonic crystal structure using fullerence films," Progress In Electromagnetics Research, Vol. 74, 181-194, 2007.
doi:10.2528/PIER07050202

16. Srivastava, R., S. Pati, and S. P. Ojha, "Enhancement of omnidirectional reflection in photonic crystal heterostructures," Progress In Electromagnetics Research B, Vol. 1, 197-208, 2008.
doi:10.2528/PIERB07102903

17. Huang, J. P. and K. W. Yu, "Optical nonlinearity enhancement of graded metallic fllms," Appl. Phys. Lett., Vol. 85, 94-96, 2004.
doi:10.1063/1.1769086

18. Sang, Z. F. and Z. Y. Li, "Effective negative refractive index of graded granular composites with metallic magnetic particles," Phys. Lett. A, Vol. 334, 422-428, 2005.
doi:10.1016/j.physleta.2004.11.047

19. Huang, J. P. and K. W. Yu, "Second-harmonic generation in graded metallic films," Opt. Lett., Vol. 30, 275-277, 2005.
doi:10.1364/OL.30.000275

20. Yeh, P., Optical Waves in Layered Media, John Wiley and Sons, New York, 1988.

21. Born, M. and E. Wolf, Principle of Optics, 4th Ed., Pergamon, Oxford, 1970.

22. Winn, J. N., Y. Fink, S. Fan, and J. D. Joannopoulos, "Omnidirectional reflection from a one-dimensional photonic crystal," Optics Lett., Vol. 23, 1573-1575, 1998.
doi:10.1364/OL.23.001573

23. Lee, H. Y. and T. Yao, "Design and evaluation of omnidirectional one-dimensional photonic crystals," J. Appl. Phys., Vol. 93, 819-937, 2003.
doi:10.1063/1.1530726

24. Srivastava, S. K. and S. P. Ojha, "Broadband optical reflector based on Si/SiO2 one dimensional graded photonic crystal structure," J. Mod. Opt., Vol. 56, No. 1, 33-40, 2009.
doi:10.1080/09500340802428330