Vol. 17
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2010-11-04
Theory and Applications of High Impedance Wires
By
Progress In Electromagnetics Research C, Vol. 17, 67-78, 2010
Abstract
This paper presents the theory, properties, types, and applications of high impedance wires (HIWs). The effective permeability of a transmission line that consists of an HIW and a second conductor has a resonating behavior. Consequently, slow-wave and stop-band regions appear in the dispersion relation. In the slow wave regions, a new implementation for dual-mode filter is presented. The proposed filter size is reduced by 33%. In the stop band region, a new application is presented; dual-band balun where the common mode is rejected by the HIW. The novel design has a total area of 4 x 2.4 cm2 and exhibits reliable performances at 2.75 GHz with a 40% bandwidth (2.2--3.3 GHz) and at 4.75 GHz with a 15% bandwidth (4.4--5.1 GHz) with an amplitude imbalance less than 1 dB, a return loss better than 13 dB, and phase imbalance less than 5°. Theoretical expectations were confirmed by EM simulations and measurements.
Citation
Marwah Shafee A. M. Mahmoud Amr M. E. Safwat , "Theory and Applications of High Impedance Wires," Progress In Electromagnetics Research C, Vol. 17, 67-78, 2010.
doi:10.2528/PIERC10092501
http://www.jpier.org/PIERC/pier.php?paper=10092501
References

1. Chi, P. and T. Itoh, "Miniaturized dual-band directional couplers using composite right/left-handed transmission structures and their applications in beam pattern diversity systems ," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 5, 1207-1215, 2009.
doi:10.1109/TMTT.2009.2017350

2. Engheta, N. and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations, Wiley-IEEE Press, 2006.

3. Selvanayagam, M. and G. V. Eleftheriades, "Negative-refractive-index transmission lines with expanded unit cells," IEEE Trans. Antennas and Propagation, 3592-3596, 2008.
doi:10.1109/TAP.2008.2005546

4. Caloz, C., "Dual composite right/left-handed (D-CRLH) transmission line metamaterial," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 11, 585-587, 2006.
doi:10.1109/LMWC.2006.884773

5. Sindreu, M., A. Vlez, F. Aznar, G. Siso, J. Bonache, and F. Martin, "Applications of open split ring resonators and open complementary split ring resonators to the synthesis of artificial transmission lines and microwave passive components ," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 12, 3395-3403, 2009.
doi:10.1109/TMTT.2009.2033867

6. Sievenpiper, D. F., L. Zhang, R. Broas, N. Alexopolous, and E. Yablonovitvh, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microw. Theory Tech., Vol. 47, 2059-2074, 1999.
doi:10.1109/22.798001

7. Tran, C.-M., H. Hafdallah-Ouslimani, L. Zhou, and A. C. Priou, "High impedance surfaces based antennas for high data rate communications at 40 GHz," Progress In Electromagnetics Research C, Vol. 13, 217-229, 2010.
doi:10.2528/PIERC10040404

8. Bao, X. L., G. Ruvio, and M. J. Ammann, "Directional dual-band slot antenna with dual-bandgap high impedance-surface reflector," Progress In Electromagnetics Research C, Vol. 9, 1-11, 2009.
doi:10.2528/PIERC09051505

9. Abootorabi, S. M., M. Kaboli, S. A. Mirtaheri, and M. S. Abrishamian, "Using high impedance ground plane for improving radiation in monopole antenna and its unusual Reflection phase properties," PIERS Proceedings, 197-201, Moscow, Russia, August 18-21, 2009.

10. Safwat, A. M. E., S. A. Tretyakov, and A. V. Raisanen, "High-impedance wire," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 631-634, 2007.
doi:10.1109/LAWP.2007.913323

11. Shafee, M. A. M., A. M. E. Safwat, and A. H. Morshid, "On the Conference (EuMC)," Roma, Italy, 2009.

12. Shafee, M. A. M. and A. M. E. Safwat, "High impedance wire patch antenna," European Microwave Conference (EuMC), Roma, Italy, 2009.

13. Mahmoud, A. M., M. A Wahby, and A. M. E. Safwat, "Microstrip balun over HIW-ground," IEEE Microwave and Wireless Components Letters, Vol. 19, 443-445, 2009.
doi:10.1109/LMWC.2009.2022125

14. Safwat, A. M. E., "High impedance wire composite right/left handed transmission line," Microwave and Optical Technology Letters, Vol. 52, 1390-1393, 2010.
doi:10.1002/mop.25215

15. Wolff, I., "Microstrip bandpass filter using degenerate modes of a microstrip ring resonator," Electron. Lett., 302-303, 1972.
doi:10.1049/el:19720223

16. Hong, J. and M. Lancaster, "Microstrip Filters for RF/Microwave Applications," New York, Wiley, 2001.

17. Caloz, C., A. Sanada, and T. Itoh, "A novel composite right-/left handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth," IEEE Trans. Microw. Theory Tech., Vol. 53, 980-992, 2004.
doi:10.1109/TMTT.2004.823579

18. Awida, M., A. Safwat, and H. El-Hennawy, "Miniaturized dual-mode microstrip bandpass filters using meander space-filling curves," Proceedings of EuMA, Vol. 2, 187-192, 2006.

19. Salah-Eddin, M. A. and A. M. E. Safwat, "Defected-ground coupled microstrip lines and its application in wideband baluns," IET Microw. Antennas Propag., Vol. 1, 893-899, 2007.
doi:10.1049/iet-map:20070018

20. Abdelaziz, M., A. M. E. Safwat, F. Podevin, and A. Vilcot, "Coplanar waveguide filters based on multibehavior etched-ground stubs," IEEE Trans. on Components and Packages Technologoes, Vol. 32, 816-824, 2009.

21. Pozar, D. M., Microwave Engineering, 3rd Ed., Wiley, New York, 2003.