Vol. 16
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2010-12-01
Analysis and Synthesis of Radar Cross Section of Array Antennas
By
Progress In Electromagnetics Research M, Vol. 16, 73-84, 2011
Abstract
Our previous work has proved that the Monostatic Radar Cross Section (MRCS) of array antennas can be decomposed into the multiplication of array MRCS factor and element MRCS factor. The principle was derived in a special case that the array only had dipole antenna elements. However, many array antennas have more general antenna elements whose current is aperture distributed along the antenna structure. Obviously it encounters limited application problem when the principle is used to analyze more general array antennas other than dipole arrays. Therefore, the principle is extended into the more general array with arbitrary aperture antenna elements in this paper. In deriving the principle, the devices in the feed are assumed to have identical transmission and reflection coefficients. In order to validate the principle the scattering pattern of a waveguide slot array and an array with helix antenna elements are synthesized utilizing the array RCS factor. The simulation and calculation results prove that the principle is correct for the RCS pattern synthesis of general arrays with aperture antenna elements.
Citation
Bao Lu Shu-Xi Gong Shuai Zhang Jin Ling , "Analysis and Synthesis of Radar Cross Section of Array Antennas," Progress In Electromagnetics Research M, Vol. 16, 73-84, 2011.
doi:10.2528/PIERM10100803
http://www.jpier.org/PIERM/pier.php?paper=10100803
References

1. Coe, R. J. and A. Ishimaru, "Optimum scattering from an array of half-wave dipoles," IEEE Trans. Antennas Propagat., Vol. 18, No. 2, 224-229, Mar. 1970.
doi:10.1109/TAP.1970.1139651

2. Jin, , J.-M. and J. L. Volakis, "A hybrid finite element method for scattering and radiation by microstrip patch antennas and arrays residing in a cavity," IEEE Trans. Antennas Propagat., Vol. 39, No. 11, 1598-1604, Nov. 1991.
doi:10.1109/8.102775

3. Bow, W. J. , A. S. King, and C. E. Lee, "Scattering from finite array of microstrip patches on uniaxial substrate," IEE Electron. Lett., Vol. 28, No. 2, 126-127, Jan. 1992.
doi:10.1049/el:19920078

4. Tsay, W. J. and D. M. Pozar, "Radiation and scattering from infinite periodic printed antennas with inhomogeneous media," IEEE Trans. Antennas Propagat., Vol. 46, No. 11, 1641-1650, Nov. 1998.
doi:10.1109/8.736615

5. Zhuang, Y., K. L.Wu, C.Wu, and J. Litva, "A combined full-wave CG-FFT method for rigorous analysis of large microstrip antenna arrays," IEEE Trans. Antennas Propagat., Vol. 44, No. 1, 102-109, Jun. 1996.
doi:10.1109/8.477534

6. King, A. S. and W. J. Bow, "Scattering from a finite array of microstrip patches," IEEE Trans. Antennas Propagat., Vol. 40, No. 7, 770-774, Jul. 1992.
doi:10.1109/8.155741

7. Zhang, L. , N. Yuan, M. Zhang, L. W. Li, and Y. B. Gan, "RCS computation for a large array of waveguide slots with finite wall thickness using the MoM accelerated by P-FFT algorithm," IEEE Trans. Antennas Propagat., Vol. 53, No. 9, 3101-3105, Sep. 2005.
doi:10.1109/TAP.2005.854537

8. Zhang, M. , L. W. Li, and A. Y. Ma, "Analysis of scattering by a large array of waveguide-fed wide-slot millimeter wave antennas using precorrected-FFT algorithm," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 11, 772-774, Nov. 2005.
doi:10.1109/LMWC.2005.858965

9. Fan, G. X. and J. M. Jin, "Scattering from a cylindrically conformal slotted waveguide array antennas," IEEE Trans. Antennas Propagat., Vol. 45, No. 7, 1150-1159, Jul. 1997.

10. Thors, B., L. Joesfsson, and R. G. Rojas, "The RCS of a cylindrical array antennas coated with a dielectric layer," IEEE Trans. Antennas Propagat., Vol. 52, No. 7, 1851-1858, Jul. 2004.
doi:10.1109/TAP.2004.831300

11. Thors, B. and L. Joesfsson, "Radiation and scattering tradeoff design for conformal arrays," IEEE Trans. Antennas Propagat., Vol. 51, No. 5, 1069-1076, May 2003.
doi:10.1109/TAP.2003.811489

12. Oraizi, H. and A. Abdolali, "Ultra wide band RCS optimization of multilayered cylindrical structures for arbitrarily polarized incident plane waves," Progress In Electromagnetics Research, Vol. 78, 129-157, 2008.
doi:10.2528/PIER07090305

13. Choi, J.-I., B.-H. Lee, W. J. Yang, K. S. Song, E, and J. Park, "Optimum current distribution on resistive strip for arbitrarily prescribed RCS pattern," International Conference on Microwave and Millimeter Wave, 363-366, 1998.

14. Haupt, R. and Y. B. Chung, "Optimizing backscattering from arrays of perfectly conducting strips," IEEE Antennas Propagat. Mag., Vol. 45, No. 5, 26-33, Oct. 2003.
doi:10.1109/MAP.2003.1252807

15. Bondeson, A., Y. Yang, and P. Weinerfelt, "Optimization of radar cross section by a gradient method," IEEE Trans. Magn., Vol. 40, No. 2, 1260-1263, Mar. 2004.
doi:10.1109/TMAG.2004.824730

16. Liu, Y., S. X. Gong, and D. M. Fu, "Analysis and optimization of impedance strip for radar cross section reduction," Chinese Journal of Radio Science, Vol. 18, No. 3, 301-304, Jun. 2003.

17. Lu, B., S. X. Gong, S. Zhang, and J. Ling, "A new method for determining the scattering of linear polarized element arrays," Progress In Electromagnetics Research M, Vol. 7, 87-96, 2009.
doi:10.2528/PIERM09031804

18. Lu, B. , S. X. Gong, S. Zhang, Y. Guan, and J. Ling, "Optimum spatial arrangement of array elements for suppression of grating-lobes of radar cross section," IEEE Antennas Wireless Propag. Lett., Vol. 9, 114-117, 2010.

19. Liu, Y., S. X. Gong, and D. M. Fu, "Theoretic study of antennas scattering," ACTA Electronic Sinica, Vol. 33, 1611-1613, Sep. 2005.

20. Liu, Y., S. X. Gong, and D. M. Fu, "Scattering analysis of antenna array," Proc. Asia-Pacific Microw. Conf., 1252-1255, Nov. 2003.

21. Liu, Y., D.-M. Fu, and S.-X. Gong, "A novel model for analyzing the RCS of microstrip antenna," Journal of Electromagnetics Waves Applications, Vol. 17, No. 9, 1301-1310, 2003.
doi:10.1163/156939303322520043

22. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 18, No. 3, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818

23. Lo, Y. T. and S. W. Lee, "Antenna Handbook: Theory, Applications, and Design," Van Nostrand Reinhold Company, New York, 1988.