1. Andrew, T. L., H.-Y. Tsai, and R. Menon, "Confining light to deep subwavelength dimensions to enable optical nanopatterning," Science, Vol. 324, 917-921, 2009.
doi:10.1126/science.1167704 Google Scholar
2. Suyama, T. and Y. Okuno, "Surface plasmon resonance absorption in a multilayered thin-film grating," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 13, 1773-1783, 2009.
doi:10.1163/156939309789566914 Google Scholar
3. Politano, A., R. G. Agostino, E. Colavita, et al. "Electronic properties of self-assembled quantum dots of sodium on Cu(111) and their interaction with water," Surface Science, Vol. 601, 2656-2659, 2007.
doi:10.1016/j.susc.2006.11.079 Google Scholar
4. Politano, A., R. G. Agostino, E. Colavita, et al. "High resolution electron energy loss measurements of Na/Cu(111) and H2O/Na/Cu(111): Dependence of water reactivity as a function of Na coverage," The Journal of Chemical Physics, Vol. 126, 244712, 2007. Google Scholar
5. Draine, B. T. and P. J. Flatau, "Discrete-dipole approximation for periodic targets: theory and tests," Journal of Optical Society of America A, Vol. 25, No. 11, 2693-2703, 2008.
doi:10.1364/JOSAA.25.002693 Google Scholar
6. Jiao, D. and J. M. Jin, "Time-domain finite-element modeling of dispersive media," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 5, 220-222, 2001.
doi:10.1109/7260.923034 Google Scholar
7. Liu, Y., Z. Liang, and Z. Yang, "Computation of electromagnetic dosimetry for human body using parallel FDTD algorithm com- bined with interpolation technique," Progress In Electromagnetics Research, Vol. 82, 95-107, 2008.
doi:10.2528/PIER08021603 Google Scholar
8. Garcia, S. G., F. Costen, M. Fernandez Pantoja, L. D. Angulo, and J. Alvarez, "Effcient excitation of waveguides in Crank-Nicolson FDTD," Progress In Electromagnetics Research Letters, Vol. 17, 27-38, 2010.
doi:10.2528/PIERL10072008 Google Scholar
9. Zhang, Y.-Q. and D.-B. Ge, "A unified FDTD approach for electromagnetic analysis of dispersive objects," Progress In Electromagnetics Research, Vol. 96, 155-172, 2009.
doi:10.2528/PIER09072603 Google Scholar
10. Mohammadi, A. and M. Agio, "Dispersive contour-path finite-difference time-domain algorithm for modelling surface plasmon polaritons at flat interfaces," Optics Express, Vol. 14, No. 23, 11330-11338, 2006.
doi:10.1364/OE.14.011330 Google Scholar
11. Wang, A.-Q., L.-X. Guo, and C. Chai, "Numerical simulations of electromagnetic scattering from 2D rough surface: Geometric modeling by nurbs surface," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 10, 1315-1328, 2010.
doi:10.1163/156939310791958662 Google Scholar
12. Wei, B., S.-Q. Zhang, Y.-H. Dong, and F. Wang, "A general FDTD algorithm handling thin dispersive layer," Progress In Electromagnetics Research B, Vol. 18, 243-257, 2009.
doi:10.2528/PIERB09090306 Google Scholar
13. Hirono, T., ni, and T. Yamanaka., "Effective permittivities with exact second-order accuracy at inclined dielectric interface for the two-dimensional finite-difference time-domain method," Applied Optics, Vol. 49, No. 7, 1080-1096, 2010.
doi:10.1364/AO.49.001080 Google Scholar
14. Hwang, K.-P. and A. C. Cangellaris, "Effective permittivities for second-order accurate FDTD equations at dielectric interfaces," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 4, 158-160, 2001.
doi:10.1109/7260.916329 Google Scholar
15. Mohammadi, A., H. Nadgaran, and M. Agio, "Contour-path effective permittivities for the two-dimensional finite-difference time-domain method," Optics Express, Vol. 13, No. 25, 10367-10381, 2005.
doi:10.1364/OPEX.13.010367 Google Scholar
16. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3nd Edition, Artech House, Norwood, MA, 2005.
17. Zhao, Y., P. Belov, and Y. Hao, "Accurate modelling of left-handed metamaterials using a finite-difference time-domain method with spatial averaging at the boundaries," Journal of Optics A: Pure and Applied Optics, Vol. 9, S468-S475, 2007.
doi:10.1088/1464-4258/9/9/S31 Google Scholar
18. Chen, J. J., T. M. Grzegorczyk, B.-I. Wu, and J. A. Kong, "Limitation of FDTD in simulation of a perfect lens imaging system," Optics Express, Vol. 13, No. 26, 10840-10845, 2005.
doi:10.1364/OPEX.13.010840 Google Scholar
19. Liu, Y., Z. Liang, and Z. Q. Yang, "A novel FDTD approach featuring two-level parallelization on PC cluster," Progress In Electromagnetics Research, Vol. 80, 393-408, 2008.
doi:10.2528/PIER07120703 Google Scholar
20. Teixeira, F. L., "Time-domain finite-difference and finite-element methods for Maxwell equations in complex media," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 8, 2150-2166, 2008.
doi:10.1109/TAP.2008.926767 Google Scholar
21. Brongersma, M. L., J. W. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Physical Review B, Vol. 62, No. 24, R16356-R16359, 2000.
doi:10.1103/PhysRevB.62.R16356 Google Scholar
22. Bik, A., M. Girkar, P. Grey and X.-M. Tian, "Effcient exploitation of parallelism on Pentium III and Pentium 4 processor-based systems," Intel Technology Journal, Q1, 1-9, 2001. Google Scholar