Vol. 20
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-09-07
Microwave Transmission of a Hexagonal Array of Triangular Metal Patches
By
Progress In Electromagnetics Research M, Vol. 20, 219-229, 2011
Abstract
The microwave transmission of hexagonal arrays consisting of patches of equilateral aluminium triangles has been experimentally studied as a function of metal occupancy (triangle size). As one would expect, at low frequencies the microwave transmission drops on passing through the connectivity threshold (50%) when the disconnected hexagonal array of metal triangles switches to a disconnected hexagonal array of equilateral holes. However, for higher frequencies resonant phenomena cause a complete reversal in this behaviour such that the transmission, on passing through the connectivity threshold, increases substantially.
Citation
G. Stevens J. D. Edmunds Alastair P. Hibbins John Roy Sambles , "Microwave Transmission of a Hexagonal Array of Triangular Metal Patches," Progress In Electromagnetics Research M, Vol. 20, 219-229, 2011.
doi:10.2528/PIERM11072206
http://www.jpier.org/PIERM/pier.php?paper=11072206
References

1. Ebbesen, T. W., H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature, Vol. 391, 667, 1998.

2. Martin-Moreno, L., F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett., Vol. 86, 1114, 2001.

3. Genet, C. and T. W. Ebbesen, "Light in tiny holes," Nature, Vol. 445, 39, 2007.

4. Antonets, I. V., L. N. Kotov, S. V. Nekipelov, and E. N. Kar- pushov, "Conducting and reflecting properties of thin metal films," Tech. Phys., Vol. 49, 1496, 2004.

5. Kelly, R. J., M. J. Lockyear, J. R. Suckling, J. R. Sambles, and C. R. Lawrence, "Enhanced microwave transmission through a patterned metal film," Appl. Phys. Lett., Vol. 90, 223506, 2007.

6. Hansen, R. C. and W. T. Pawlewicz, "Effective conductivity and microwave reflectivity of thin metallic films," IEEE Trans. Microw. Theory Tech., Vol. 30, 2064, 1982.

7. Lagarkov, A. N., K. N. Rozanov, A. K. Sarychev, and N. A. Si- mona, "Experimental and theoretical study of metal-dielectric percolating films at microwaves," Physica A, Vol. 241, 199, 1997.

8. Kim, J. H. and P. J. Moyer, "Transmission characteristics of metallic equilateral triangular nanohole arrays," Appl. Phys. Lett., Vol. 89, 121106, 2006.

9. Bethe, H. A., "Theory of diffraction by small holes," Phys. Rev., Vol. 66, 163, 1944.

10. Ghaemi, H. F., T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, "Surface plasmons enhance optical transmission through subwavelength holes," Phys. Rev. B, Vol. 58, 6779, 1998.

11. Popov, E., M. Neviere, S. Enoch, and R. Reinisch, "Theory of light transmission through subwavelength periodic hole arrays," Phys. Rev. B, Vol. 62, 16100, 2000.

12. Popov, E., S. Enoch, G. Tayeb, M. Neviere, B. Gralak, and N. Bonod, "Enhanced transmission due to nonplasmon resonances in one-and two-dimensional gratings," Appl. Opt., Vol. 43, 999, 2004.

13. Avrutsky, I., Y. Zhao, and V. Kochergin, "Surface-plasmon-assisted resonant tunneling of light through a periodically corrugated thin metal film," Opt. Lett., Vol. 25, 595, 2000.

14. Grupp, D. E., H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, and T. Thio, "Fundamental role of metal surface in enhanced transmission through subwavelength apertures," Appl. Phys. Lett., Vol. 77, 1569, 2000.

15. Thio, T., H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbe- sen, "Surface-plasmon-enhanced transmission through hole arrays in Cr films," Opt. Soc. Am. B, Vol. 16, 1743, 1999.

16. Degiron, A., H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, "Effect of hole depth on enhanced light transmission through subwavelength hole arrays," Appl. Phys. Lett., Vol. 81, 4327, 2002.

17. Papasimakis, N., V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and F. J. Garia de Abajo, "Enhanced microwave transmission through quasicrystal hole arrays," Appl. Phys. Lett., Vol. 91, 081503, 2007.

18. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, New York, 2000.
doi:10.1002/0471723770

19. Ulrich, R., "Far-infrared properties of metallic mesh and its complementary structure," Infrared Phys., Vol. 7, 37, 1967.

20. Whitbourn, L. B. and R. C. Compton, "Equivalent-circuit formulas for metal grid reflectors at a dielectric boundary," Appl. Opt., Vol. 24, 217, 1985.

21. Dawes, D. H., M. C. McPhedran, and L. B. Whitbourn, "Thin capacitive meshes on a dielectric boundary: Theory and experiment," Appl. Opt., Vol. 28, 3498, 1989.

22. Edmunds, J. D., A. P. Hibbins, J. R. Sambles, and I. J. Youngs, "Resonantly inverted microwave transmissivity threshold of metal grids," New Journal of Physics, Vol. 12, 063007, 2010.

23. Babinet, M. and Memoires d'optique meteorologique, Comptes Rendus de l' Academie des Sciences, Vol. 4, 638, 1837.

24., , Finite Element Modelling: HFSSTM, Ansoft Corporation, Pittsburgh, CA, USA..