Vol. 20
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2011-08-19
Numerical Analysis of Conformal UC-PBG Structures
By
Progress In Electromagnetics Research M, Vol. 20, 95-105, 2011
Abstract
In this paper, the performance of conventional Uniplanar Compact Photonic Band Gap (UC-PBG) structures is investigated under different bending extents. The structure under study is operated as an Artificial Magnetic Conductor (AMC) in which performance is mainly characterized by its resonant frequency and bandwidth. Modelling and numerical analysis have been carried out using CST Microwave Studio simulation software which is based on Finite Integration Technique (FIT). Results show that different bending extents affect the AMC's performance which is specified by a shift to higher resonant frequencies and bandwidth degradation when the degree of bending is increased. Furthermore, we point out some important simulation tips to avoid inaccurate and/or invalid results. This type of study is important to evaluate the performance of such structures for conformal applications. To the best of the authors' knowledge, such type of systematic study is being reported for the first time.
Citation
Haider R. Khaleel Hussain M. Al-Rizzo Daniel G. Rucker , "Numerical Analysis of Conformal UC-PBG Structures," Progress In Electromagnetics Research M, Vol. 20, 95-105, 2011.
doi:10.2528/PIERM11073001
http://www.jpier.org/PIERM/pier.php?paper=11073001
References

1. Sievenpiper, D. F., M. E. Sickmiller, and E. Yablonovitch, "3D wire mesh photonic crystals," Phys. Rev. Lett. B, Condens. Matter, Vol. 76, 2480-2483, Apr. 1996.

2. Shumpert, J., T. Ellis, G. Rebeiz, and L. Katehi, "Microwave and millimeter-wave propagation in photonic bandgap structures," IEEE AP-S/URSI Symp. Dig., 678, 1997.

3. Qian, Y., V. Radisic, and T. Itoh, "Simulation and experiment of photonic bandgap structures for microstrip circuits," IEEE APMC. Symp. Dig., 585-588, Hong Kong, Dec. 2-5, 1997.

4. Brown, E. R., C. D. Parker, and E. Yablonovitch, "Radiation properties of a planar antenna on a photonic-crystal substrate," J. Opt. Soc. Amer. B, Opt. Phys., Vol. 10, 404-407, Feb. 1993.
doi:10.1364/JOSAB.10.000404

5. Sigalas, M. M., R. Biswas, and K. M. Ho, "Theoretical study of dipole antennas on photonic band-gap materials," Microwave Opt. Technol. Lett., Vol. 13, 205-209, Nov. 1996.
doi:10.1002/(SICI)1098-2760(199611)13:4<205::AID-MOP9>3.0.CO;2-Q

6. Yang, F. and Y. Rahmat-Samii, Electromagnetic Band-gap Structures in Antenna Engineering, Cambridge Univ. Press, Cambridge, UK, 2008.
doi:10.1017/CBO9780511754531

7. Goussetis, G., A. P. Feresidis, and J. C. Vardaxoglou, "Tailoring the AMC and EBG characteristics of periodic metallic arrays printed on grounded dielectric substrate," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 1, 82-89, Jan. 2006.
doi:10.1109/TAP.2005.861575

8. Zhu, S. and R. J. Langley, "Dual band wearable antennas over EBG substrate," Electron. Lett., Vol. 43, No. 3, 141-143, Feb. 2007.
doi:10.1049/el:20073151

9. Sievenpiper, D., L. J. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2059-2074, Nov. 1999.
doi:10.1109/22.798001

10. Yang, L., M. Y. Fan, F. L. Chen, J. Z. She, and Z. H. Feng, "A novel compact electromagnetic bandgap (EBG) structure and its applications for microwave circuits," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 1, 183-190, Jan. 2005.
doi:10.1109/TMTT.2004.839322

11. Hosseinipanah, M. and Q. Wu, "Miniaturised high-impedance surface with high angular stability of resonant frequency," Electron. Lett., Vol. 45, No. 24, 1204-1206, Nov. 2009.
doi:10.1049/el.2009.1885

12. Kim, Y., F. Yang, and A. Z. Elsherbeni, "Compact artificial magnetic conductor designs using planar square spiral geometries," Progress In Electromagnetics Research, Vol. 77, 43-54, 2007.
doi:10.2528/PIER07072302

13. Yousefi, L., H. Attia, and O. M. Ramahi, "Broadband experimental characterization of artificial magnetic materials based on a microstrip line method," Progress In Electromagnetics Research, Vol. 90, 1-13, 2009.
doi:10.2528/PIER08121904

14. Yang, F. R., K. P. Ma, Y. X. Qian, and T. Itoh, "A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuit," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 8, 1509-1514, Aug. 1999.
doi:10.1109/22.780402

15. Salonen, P. O., F. Yang, Y. Rahmat-Samii, and M. Kivikoski, "WEBGA - Wearable electromagnetic band-gap antenna," Proc. IEEE Antennas Propag. Soc. Int. Symp., Vol. 1, 455-459, 2004.

16. Salonen, P., Y. Rahmat-Samii, M. Schaffrath, and M. Kivikoski, "Effect of textile materials on wearable antenna performance: A case study of GPS antennas," Proc. IEEE Antennas Propag. Soc. Int. Symp., Vol. 1, 459-462, 2004.

17. Massey, P. J., "Mobile phone antennas integrated within clothing," Proc. IEE 11th Int. Conf. Antennas Propag. (ICAP'01), Vol. 1, 344-347, Manchester, UK, 2001.

18. Salonen, P., M. Keskialammi, and L. Sydanheimo, "A low cost 2.45 GHz photonic band gap patch antenna for wearable systems," Proc. IEE 11th Int. Conf. Antennas Propag. (ICAP'01), Vol. 2, 719-723, Manchester, UK, 2001.

19. Khaleel, H. R., H. M. Al-Rizzo, D. G. Rucker, and T. A. Elwi, "Wearable yagi microstrip antenna for telemedicine applications," IEEE RWS Symp., 280-283, New Orleans, USA, 2010.

20. Locher, I., M. Klemm, T. Kirstein, and G. Troster, "Design and characterization of purely textile patch antennas," IEEE Transactions on Advanced Packaging, Vol. 29, No. 4, 777-788, Nov. 2006.
doi:10.1109/TADVP.2006.884780

21. Salonen, P. and Y. Rahmat-Samii, "Textile antennas: Effects of antenna bending on input matching and impedance bandwidth," IEEE Aerospace and Electronic Systems Magazine, Vol. 22, No. 12, 18-22, Dec. 2007.
doi:10.1109/MAES.2007.4408597

22., , CST Microwave Studio, http://www.cst.com..
doi:10.1109/MAES.2007.4408597

23. Luukkonen, O., C. Simovski, G. Granet, G. Goussetis, D. Lioubtchenko, A. V. Raisanen, and S. A. Tretyakov, "Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 6, 1624-1632, Jun. 2008.
doi:10.1109/TAP.2008.923327