Vol. 27
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-11-27
Ldmos Modeling and High Efficiency Power Amplifier Design Using PSO Algorithm
By
Progress In Electromagnetics Research M, Vol. 27, 219-229, 2012
Abstract
A simple and nonlinear LDMOS transistor model with multi-bias consideration has been proposed. Elements of the model are optimizes using particle swarm optimization (PSO) algorithm to fit the measured RF specifications of a typical transistor. The developed model is used then to design a high efficiency power amplifier with 55% power added efficiency (PAE) at 33 dBm output power with 12 dB power gain. This amplifier has a novel topology with optimized BALUN and microstrip matching network which makes it unconditionally stable and extensively linear over UHF frequency range of 100 MHz to 1 GHz with 163% fractional bandwidth. This power amplifier is fabricated and realized with 12-V supply voltage. A good agreement between simulated and measured values observed, indicating high accuracy of either the model and the amplifier design approach.
Citation
Mohammad Jahanbakht Mohammad Tondro.Aghmyoni , "Ldmos Modeling and High Efficiency Power Amplifier Design Using PSO Algorithm," Progress In Electromagnetics Research M, Vol. 27, 219-229, 2012.
doi:10.2528/PIERM12070703
http://www.jpier.org/PIERM/pier.php?paper=12070703
References

1. Tan, Y., M. Kumar, J. K. O. Sin, L. Shi, and J. Lau, "A 900-MHz fully integrated SOI power amplifier for single-chip wireless transceiver applications," IEEE Journal of Solid-State Circuits, Vol. 35, No. 10, Oct. 2000.

2. Chen, Y., C.-Y. Liu, T.-N. Luo, and D. Heo, "A high-efficient CMOS RF power amplifier with automatic adaptive bias control," IEEE Microwave and Wireless Components Letters, Vol. 16, 615-617, Nov. 2006.

3. Kim, Y., C. Park, H. Kim, and S. Hong, "CMOS RF power amplifier with reconfigurable transformer," Electronics Letters,, Vol. 42, 405-407, Mar. 2006.
doi:10.1049/el:20060237

4. Nemati, H. M., C. Fager, M. Thorsell, and H. Zirath, "High-efficiency LDMOS power-amplifier design at 1 GHz using an optimized transistor model," IEEE Transaction on Microwave Theory and Techniques, Vol. 57, 1647-1654, Jul. 2009.

5. Solwati, T., C. A. T. Salama, J. Sitch, G. Rabjohn, and D. Smith, "Low-voltage high-efficiency GaAs class E power amplifiers for wireless transmitters," IEEE Journal of Solid-State Circuits, Vol. 30, 1074-1080, Oct. 2009.
doi:10.1109/4.466076

6. Nielsen, M. and T. Larsen, "A 2-GHz GaAs HBT RF pulse width modulator," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, 300-304, Feb. 2008.
doi:10.1109/TMTT.2007.913375

7. Shirvani, A., D. K. Su, and B. A. Wooley, "A CMOS RF power amplifier with parallel amplification for efficient power control," IEEE Journal of Solid-State Circuits, Vol. 37, 684-693.

8. Ortega-Gonzalez, F. J., "High power wideband class-E power amplifier," IEEE Microwave and Wireless Components Letters, Vol. 20, 569-571, Oct. 2010.
doi:10.1109/LMWC.2010.2064760

9. Naghavi, A. H., M. Tondro-Aghmiyouni, M. Jahanbakht, and A. A. Lotfi Neyestanak, "Hybrid wideband microstrip Wilkinson power divider based on lowpass filter optimized using particle swarm method," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 14-15, 1877-1886, 2010.

10. Gruner, D., R. Sorge, O. Bengtsson, A. Al Tanany, and G. Boeck, "Analysis, design, and evaluation of LDMOS FETs for RF power applications up to 6 GHz," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, 4022-4030, Dec. 2010.

11. Kim, J., B. Fehri, S. Boumaiza, and J. Wood, "Power efficiency and linearity enhancement using optimized asymmetrical Doherty power amplifiers," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, 425-434, Feb. 2011.
doi:10.1109/TMTT.2010.2086466