Vol. 27
Latest Volume
All Volumes
PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-11-27
Ldmos Modeling and High Efficiency Power Amplifier Design Using PSO Algorithm
By
Progress In Electromagnetics Research M, Vol. 27, 219-229, 2012
Abstract
A simple and nonlinear LDMOS transistor model with multi-bias consideration has been proposed. Elements of the model are optimizes using particle swarm optimization (PSO) algorithm to fit the measured RF specifications of a typical transistor. The developed model is used then to design a high efficiency power amplifier with 55% power added efficiency (PAE) at 33 dBm output power with 12 dB power gain. This amplifier has a novel topology with optimized BALUN and microstrip matching network which makes it unconditionally stable and extensively linear over UHF frequency range of 100 MHz to 1 GHz with 163% fractional bandwidth. This power amplifier is fabricated and realized with 12-V supply voltage. A good agreement between simulated and measured values observed, indicating high accuracy of either the model and the amplifier design approach.
Citation
Mohammad Jahanbakht, and Mohammad Tondro.Aghmyoni, "Ldmos Modeling and High Efficiency Power Amplifier Design Using PSO Algorithm," Progress In Electromagnetics Research M, Vol. 27, 219-229, 2012.
doi:10.2528/PIERM12070703
References

1. Tan, Y., M. Kumar, J. K. O. Sin, L. Shi, and J. Lau, "A 900-MHz fully integrated SOI power amplifier for single-chip wireless transceiver applications," IEEE Journal of Solid-State Circuits, Vol. 35, No. 10, Oct. 2000.

2. Chen, Y., C.-Y. Liu, T.-N. Luo, and D. Heo, "A high-efficient CMOS RF power amplifier with automatic adaptive bias control," IEEE Microwave and Wireless Components Letters, Vol. 16, 615-617, Nov. 2006.

3. Kim, Y., C. Park, H. Kim, and S. Hong, "CMOS RF power amplifier with reconfigurable transformer," Electronics Letters,, Vol. 42, 405-407, Mar. 2006.
doi:10.1049/el:20060237

4. Nemati, H. M., C. Fager, M. Thorsell, and H. Zirath, "High-efficiency LDMOS power-amplifier design at 1 GHz using an optimized transistor model," IEEE Transaction on Microwave Theory and Techniques, Vol. 57, 1647-1654, Jul. 2009.

5. Solwati, T., C. A. T. Salama, J. Sitch, G. Rabjohn, and D. Smith, "Low-voltage high-efficiency GaAs class E power amplifiers for wireless transmitters," IEEE Journal of Solid-State Circuits, Vol. 30, 1074-1080, Oct. 2009.
doi:10.1109/4.466076

6. Nielsen, M. and T. Larsen, "A 2-GHz GaAs HBT RF pulse width modulator," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, 300-304, Feb. 2008.
doi:10.1109/TMTT.2007.913375

7. Shirvani, A., D. K. Su, and B. A. Wooley, "A CMOS RF power amplifier with parallel amplification for efficient power control," IEEE Journal of Solid-State Circuits, Vol. 37, 684-693.

8. Ortega-Gonzalez, F. J., "High power wideband class-E power amplifier," IEEE Microwave and Wireless Components Letters, Vol. 20, 569-571, Oct. 2010.
doi:10.1109/LMWC.2010.2064760

9. Naghavi, A. H., M. Tondro-Aghmiyouni, M. Jahanbakht, and A. A. Lotfi Neyestanak, "Hybrid wideband microstrip Wilkinson power divider based on lowpass filter optimized using particle swarm method," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 14-15, 1877-1886, 2010.

10. Gruner, D., R. Sorge, O. Bengtsson, A. Al Tanany, and G. Boeck, "Analysis, design, and evaluation of LDMOS FETs for RF power applications up to 6 GHz," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, 4022-4030, Dec. 2010.

11. Kim, J., B. Fehri, S. Boumaiza, and J. Wood, "Power efficiency and linearity enhancement using optimized asymmetrical Doherty power amplifiers," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, 425-434, Feb. 2011.
doi:10.1109/TMTT.2010.2086466