Vol. 25
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-09-05
Self-Collimation Effect in Two-Dimentional Photonic Crystal Based on Optofludic Technology
By
Progress In Electromagnetics Research M, Vol. 25, 255-268, 2012
Abstract
We propose an optofluidic based on two-dimensional (2D) rod-type silicon photonic crystal (PhC) waveguide that supports self-collimation effect over a large frequency and angle range without any defect or nano-scale variation in the PhC geometry. By analyzing the equi-frequency counter (EFC) of a triangular rod PhC-bands, we verify the optimum band of the structure which is suitable for self-collimation of light beams. By varying the refractive index of fluid being infiltrated into the background of PhC, we perform a systematic study of optofluidic self-collimation of light beams to achieve a wide range of angles and low loss of light. By means of selective microfluidic infiltration and remarkable dispersion properties, we show that it is possible to design auto-collimatator and negative refraction devices based on self-collimation effect with high transmission. We use the plane wave method (PWM) for analyzing the EFC and the finite difference time domain (FDTD) method for simulating the transmission properties.
Citation
Majid Ebnali-Heidari, Farnaz Forootan, and Akbar Ebnali-Heidari, "Self-Collimation Effect in Two-Dimentional Photonic Crystal Based on Optofludic Technology," Progress In Electromagnetics Research M, Vol. 25, 255-268, 2012.
doi:10.2528/PIERM12072107
References

1. John, S., "Strong localization of photons in certain dielectric superlattices," Phys. Rev. Lett., Vol. 58, 2486, 1987.
doi:10.1103/PhysRevLett.58.2486

2. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, No. 20, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059

3. Li, J., J. He, and Z. Hong, "Terahertz wave switch based on silicon photonic crystals," Applied Optics, Vol. 46, 5034-5037, 2007.
doi:10.1364/AO.46.005034

4. Li, Z., Y. Zhang, and B. Li, "Terahertz photonic crystal switch in silicon based on self-imaging principle," Optics Express, Vol. 14, 3887-3892, 2006.
doi:10.1364/OE.14.003887

5. Almeida, V. R., C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature, Vol. 431, 1081-1084, 2004.
doi:10.1038/nature02921

6. Zhang, Y. and B. Li, "Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals," Optics Express, Vol. 15, 9287-9292, 2007.
doi:10.1364/OE.15.009287

7. Notomi, M., "Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B, Vol. 62, 10696, 2000.
doi:10.1103/PhysRevB.62.10696

8. Johnson, S. G. and J. D. Joannopoulos, Photonic Crystals: The Road from Theory to Practice, Springer, 2002.

9. Kokabi, A., H. Zandi, S. Khorasani, and M. Fardmanesh, "Precision photonic band structure calculation of Abrikosov periodic lattice in type-II superconductors," Physica C: Superconductivity, Vol. 460, 1222-1223, 2007.
doi:10.1016/j.physc.2007.04.055

10. Mekis, A. and J. Joannopoulos, "Tapered couplers for efficient interfacing between dielectric and photonic crystal waveguides," Journal of Lightwave Technology, Vol. 19, 861, 2001.
doi:10.1109/50.927519

11. Kuang, W., C. Kim, A. Stapleton, and J. D. O'Brien, "Grating-assisted coupling of optical fibers and photonic crystal waveguides," Optics Letters, Vol. 27, 1604-1606, 2002.
doi:10.1364/OL.27.001604

12. Talneau, A., P. Lalanne, M. Agio, and C. Soukoulis, "Low-reflection photonic-crystal taper for efficient coupling between guide sections of arbitrary widths," Optics Letters, Vol. 27, 1522-1524, 2002.
doi:10.1364/OL.27.001522

13. Saynatjoki, A., M. Mulot, J. Ahopelto, and H. Lipsanen, "Dispersion engineering of photonic crystal waveguides with ring-shaped holes," Optics Express, Vol. 15, 8323-8328, 2007.
doi:10.1364/OE.15.008323

14. Kosaka, H., T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Applied Physics Letters,, Vol. 74, 1212, 1999.
doi:10.1063/1.123502

15. Rakich, P. T., M. S. Dahlem, S. Tandon, M. S. MihaiIbanescu, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, and E. Ippen, "Achieving centimetre-scale supercollimation in a large-area two-dimensional photonic crystal," Nature Materials, Vol. 5, 93-96, 2006.
doi:10.1038/nmat1568

16. Prather, D. W., S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, B. L. Miao, and R. Martin, "Self-collimation in photonic crystal structures: A new paradigm for applications and device development," Journal of Physics D: Applied Physics, Vol. 40, 2635, 2007.
doi:10.1088/0022-3727/40/9/S04

17. Djeffal, Z. E., H. Talleb, D. Lautru, and V. Fouad-Hanna, "Negative refractive index behavior through magneto-electric coupling in split ring resonators," Progress In Electromagnetics Research Letters, Vol. 22, 155-163, 2011.

18. Hsu, H.-T. and C.-J. Wu, "Design rules for a Fabry-Perot narrow band transmission filter containing a metamaterial negative-index defect," Progress In Electromagnetics Research Letters, Vol. 9, 101-107, 2009.
doi:10.2528/PIERL09032803

19. Witzens, J. and A. Scherer, "Efficient excitation of self-collimated beams and single Bloch modes in planar photonic crystals," JOSA A, Vol. 20, 935-940, 2003.
doi:10.1364/JOSAA.20.000935

20. Witzens, L., M. Mazilu, and T. F. Krauss, "Beam steering in planar-photonic crystals: From superprism to supercollimator," Journal of Lightwave Technology, Vol. 21, 561, 2003.

21. Pustai, D., S. Shi, C. Chen, A. Sharkawy, and D. Prather, "Analysis of splitters for self-collimated beams in planar photonic crystals," Optics Express, Vol. 12, 1823-1831, 2004.
doi:10.1364/OPEX.12.001823

22. Chen, C., A. Sharkawy, D. Pustai, S. Shi, and D. Prather, "Optimizing bending efficiency of self-collimated beams in non-channel planar photonic crystal waveguides," Optics Express, Vol. 11, 3153-3159, 2003.
doi:10.1364/OE.11.003153

23. Prather, D. W., S. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. Chen, B. L. Miao, and R. Martin, "Self-collimation in photonic crystal structures: A new paradigm for applications and device development," Journal of Physics D: Applied Physics, Vol. 40, 2635, 2007.
doi:10.1088/0022-3727/40/9/S04

24. Parazzoli, C., R. Greegor, K. Li, B. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's law," Phys. Rev. Lett., Vol. 90, 107401, 2003.
doi:10.1103/PhysRevLett.90.107401

25. Shelby, R., D. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847

26. Monat, C., P. Domachuk, and B. Eggleton, "Integrated optofluidics: A new river of light," Nature Photonics, Vol. 1, 106-114, 2007.
doi:10.1038/nphoton.2006.96

27. Ebnali-Heidari, M., C. Grillet, C. Monat, and B. Eggleton, "Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration," Optics Express, Vol. 17, 1628-1635, 2009.
doi:10.1364/OE.17.001628

28. Hosseinibalam, F., S. Hassanzadeh, A. Ebnali-Heidari, and C. Karnutsch, "Design of an optofluidic biosensor using the slow-light effect in photonic crystal structures," Applied Optics, Vol. 51, 568-576, 2012.
doi:10.1364/AO.51.000568

29. Bakhshi, S., M. K. Moravvej-Farshi, M. Ebnali-Heidari, and , "Proposal for enhancing the transmission efficiency of photonic crystal 60o waveguide bends by means of optofluidic infiltration," Applied Optics, Vol. 50, 4048-4053, 2011.
doi:10.1364/AO.50.004048

30. Bitarafan, M., et al. "Proposal for postfabrication fine-tuning of three-port photonic crystal channel drop filters by means of optofluidic infiltration," Applied Optics, Vol. 50, 2622-2627, 2011.
doi:10.1364/AO.50.002622

31. Du, F., Y. Q. Lu, et al. "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett., Vol. 85, 2181, 2004.
doi:10.1063/1.1796533

32. Mendoza-Suarez, A., H. Perez-Aguilar, and F. Villa-Villa, "Optical response of a perfect conductor waveguide that behaves as a photonic crystal," Progress In Electromagnetics Research, Vol. 121, 433, 2011.
doi:10.2528/PIER11082405

33. Erickson, D., T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, "Nanofluidic tuning of photonic crystal circuits," Optics Letters, Vol. 31, 59-61, 2006.
doi:10.1364/OL.31.000059

34. Intonti, F., S. Vignolini, V. Turck, M. Colocci, B. L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, "Rewritable photonic circuits," Appl. Phys. Lett., Vol. 89, 2111171-2111173, 2006.

35. Smith, C. L. C., D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D, Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, "Microfluidic photonic crystal double heterostructures," Phys. Lett., Vol. 91, No. 1--3, 121103, 2007.