Vol. 27
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-11-26
A Polarization-Independent Wide-Angle Dual Directional Absorption Metamaterial Absorber
By
Progress In Electromagnetics Research M, Vol. 27, 91-201, 2012
Abstract
In this paper, a polarization-independent wide-angle planar metamaterial absorber exhibiting dual directional absorption is proposed. Measurement results indicate that the planar metamaterial absorber achieves absorptivities of 86.87% and 91.48% to the normally incident electromagnetic waves propagating in forward (+z) and backward (-z) directions, respectively. Due to geometry's fourfold rotational symmetry, the absorber is polarization-independent. Additionally, the absorber works well for a wide range of incident angles for both transverse electric and transverse magnetic polarizations. Besides its impressing performance, this planar metamaterial absorber is also extremely thin that it's thickness is approximately 1/32 of the working wavelength.
Citation
Lei Lu Shaobo Qu Hua Ma Fei Yu Song Xia Zhuo Xu Peng Bai , "A Polarization-Independent Wide-Angle Dual Directional Absorption Metamaterial Absorber," Progress In Electromagnetics Research M, Vol. 27, 91-201, 2012.
doi:10.2528/PIERM12102101
http://www.jpier.org/PIERM/pier.php?paper=12102101
References

1. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402

2. Li, M. H., H. L. Yang, X. W. Hou, Y. Tian, and D. Y. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIER10071409

3. Xu, Y. Q., P. H. Zhou, H. B. Zhang, L. Chen, and L. J. Deng, "A wide-angle planar metamaterial absorber based on split ring resonator coupling," Journal of Applied Physics, Vol. 110, 044102, 2011.
doi:10.1063/1.3622675

4. Li, L., Y. Yang, and C. Liang, "A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes," Journal of Applied Physics, Vol. 110, 063702, 2011.
doi:10.1063/1.3638118

5. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.

6. Tao, H., N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Optics Express, Vol. 16, 7181-7188, 2008.
doi:10.1364/OE.16.007181

7. Tao, H., C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, "Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization," Physical Review B, Vol. 78, 241103(R), 2008.

8. Landy, N. I. , C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, "Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging," Physical Review B, Vol. 79, 125104, 2009.
doi:10.1103/PhysRevB.79.125104

9. Grant, J., Y. Ma, S. Saha, L. B. Lok, A. Khalid, and D. R. S. Cumming, "Polarization insensitive terahertz metamaterial absorber," Optics Letters, Vol. 36, 1524-1526, 2011.
doi:10.1364/OL.36.001524

10. Huang, L. , D. R. Chowdhury, S. Ramani, M. T. Reiten, S.-N. Luo, A. J. Taylor, and H.-T. Chen, "Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band," Optics Letters, Vol. 37, 154-156, 2012.
doi:10.1364/OL.37.000154

11. Avitzour, Y., Y. A. Urzhumov, and G. Shvets, "Wide-angle infrared absorber based on a negative-index plasmonic metamaterial," Physical Review B, Vol. 79, 045131, 2009.
doi:10.1103/PhysRevB.79.045131

12. Liu, N., M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, "Infrared perfect absorber and its application as plasmonic sensor," Nano Letters, Vol. 10, 2342-2348, 2010.
doi:10.1021/nl9041033

13. Liu, X. L., T. Starr, A. F. Starr, and W. J. Padilla, "Infrared spatial and frequency selective metamaterial with near-unity absorbance," Physical Review Letters, Vol. 104, 207403, 2010.
doi:10.1103/PhysRevLett.104.207403

14. Jiang, Z. H., S. Yun, F. Toor, D. H. Werner, and T. S. Mayer, "Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating," Acs Nano, Vol. 5, 4641-4647, 2011.
doi:10.1021/nn2004603

15. Feng, Q., M. B. Pu, C. G. Hu, and X. G. Luo, "Engineering the dispersion of metamaterial surface for broadband infrared absorption," Optics Letters, Vol. 37, 2133-2135, 2012.
doi:10.1364/OL.37.002133

16. Dayal, G. and S. A. Ramakrishna, "Design of highly absorbing metamaterials for infrared frequencies," Optics Express, Vol. 20, 17503-17508, 2012.
doi:10.1364/OE.20.017503

17. Aydin, K., V. E. Ferry, R. M. Briggs, and H. A. Atwater, "Broad-band polarization-independent resonant light absorption using ultrathin plasmonic super absorbers," Nature Communications, Vol. 2, 517, 2011.
doi:10.1038/ncomms1528

18. Wang, Y., T. Y. Sun, T. Paudel, Y. Zhang, Z. F. Ren, and K. Kempa, "Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells," Nano Letters,, Vol. 12, 440-445, 2012.
doi:10.1021/nl203763k

19. Wang, J. Q., C. Z. Fan, P. Ding, J. N. He, Y. G. Cheng, W. Q. Hu, G. W. Cai, E. J. Liang, and Q. Z. Xue, "Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency," Optics Express, Vol. 20, 14871-14878, 2012.
doi:10.1364/OE.20.014871

20. Gu, S., J. P. Barrett, T. H. Hand, B. I. Popa, and S. A. Cummer, "A broadband low-reflection metamaterial absorber," Journal of Applied Physics, Vol. 108, 064913, 2010.
doi:10.1063/1.3485808

21. Hu, C., X. Li, Q. Feng, X. N. Chen, and X. Luo, "Introducing dipole-like resonance into magnetic resonance to realize simultaneous drop in transmission and reflection at terahertz frequency," Journal of Applied Physics, Vol. 108, 053103, 2010.
doi:10.1063/1.3467528

22. Holloway, C. L., A. Dienstfrey, E. F. Kuester, J. F. O'Hara, A. K. Azad, and A. J. Taylor, "A discussion on the interpretation and characterization of metafilms/metasurfaces: The two-dimensional equivalent of metamaterials," Metamaterials, Vol. 3, 100-112, 2009.
doi:10.1016/j.metmat.2009.08.001

23. Holloway, C. L., E. F. Kuester, and A. Dienstfrey, "Characterizing metasurfaces/metafilms: The connection between surface susceptibilities and effective material properties," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1507-1511, 2011.
doi:10.1109/LAWP.2011.2182591

24. Holloway, C. L., E. F. Kuester, J. A. Gordon, J. O'Hara, J. Booth, D. R. Smith, "An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials," IEEE Antennas and Propagation Magazine, Vol. 54, 10-35, 2012.
doi:10.1109/MAP.2012.6230714

25. Morits, D. and C. Simovski, "Electromagnetic characterization of planar and bulk metamaterials: A theoretical study," Physical Review B, Vol. 82, 165114, 2010.
doi:10.1103/PhysRevB.82.165114