Vol. 28
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2012-12-25
Modeling Shielding Effectiveness for Composite Walls of Concrete and Carbon Filaments
By
Progress In Electromagnetics Research M, Vol. 28, 15-25, 2013
Abstract
Concrete walls reinforced with rebars have poor shielding effectiveness for telecommunication frequencies (frequencies above 0.5 GHz). An effective method to increase the shielding effectiveness of the walls is to increase the complex permittivity of the concrete. This can be done by mixing in thin filaments of a material with high conductivity. One such material is carbon. In this paper the Maxwell Garnett mixing rule is used to model a concrete material with carbon filaments. The shielding effectiveness computed with the mixing rule is found to agree with previously published measurement results.
Citation
Anders Ellgardt Daniel Mansson , "Modeling Shielding Effectiveness for Composite Walls of Concrete and Carbon Filaments," Progress In Electromagnetics Research M, Vol. 28, 15-25, 2013.
doi:10.2528/PIERM12112004
http://www.jpier.org/PIERM/pier.php?paper=12112004
References

1. Dalke, R., C. Holloway, P. McKenna, M. Johansson, and A. Ali, "Effects of reinforced concrete structures on RF communications," IEEE Transactions on Electromagnetic Compatibility, Vol. 42, No. 4, 486-496, Nov. 2000.
doi:10.1109/15.902318

2. Guan, H., S. Liu, Y. Duan, and J. Cheng, "Cement based electromagnetic shielding and absorbing building materials," Cement and Concrete Composites, Vol. 28, No. 5, 468-474, 2006.
doi:10.1016/j.cemconcomp.2005.12.004

3. Wen, S. and D. D. L. Chung, "Electromagnetic interference shielding reaching 70 dB in steel fiber cement," Cement and Concrete Research, Vol. 34, No. 2, 329-332, 2004.
doi:10.1016/j.cemconres.2003.08.014

4. Fu, X. and D. D. L. Chung, "Submicron carbon filament cement-matrix composites for electromagnetic interference shielding," Cement and Concrete Research, Vol. 26, No. 10, 1467-1472, 1996.
doi:10.1016/0008-8846(96)00146-9

5. Cao, J. and D. D. L. Chung, "Colloidal graphite as an admixture in cement and as a coating on cement for electromagnetic interference shielding," Cement and Concrete Research, Vol. 33, No. 11, 1737-1740, 2003.
doi:10.1016/S0008-8846(03)00152-2

6. Chiou, J.-M., Q. Zheng, and D. Chung, "Electromagnetic interference shielding by carbon fibre reinforced cement," Composites, Vol. 20, No. 4, 379-381, 1989.
doi:10.1016/0010-4361(89)90663-0

7. Cao, J. and D. D. L. Chung, "Use of fly ash as an admixture for electromagnetic interference shielding," Cement and Concrete Research, Vol. 34, No. 10, 1889-1892, 2004.
doi:10.1016/j.cemconres.2004.02.003

8. Roqueta, G., B. Monsalve, S. Blanch, J. Romeu, and L. Jofre, "Microwave dielectric properties inspection of fiber-reinforced civil structures," IEEE Antennas and Propagation Society International Symposium, AP-S 2008, 1-4, Jul. 2008.

9. Koledintseva, M. Y., J. L. Drewniak, R. E. DuBroff, K. N. Rozanov, and B. Archambeault, "Modeling of shielding composite materials and structures for microwave frequencies," Progress In Electromagnetics Research B, Vol. 15, 197-215, 2009.
doi:10.2528/PIERB09050410

10. Sihvola, A., Electromagnetic Mixing Formulas and Applications, The Institution of Electrical Engineers, 1999.
doi:10.1049/PBEW047E

11. Robert, A., "Dielectric permittivity of concrete between 50MHz and 1 GHz and GPR measurements for building materials evaluation," Journal of Applied Geophysics, Vol. 40, No. 1-3, 89-94, 1998.
doi:10.1016/S0926-9851(98)00009-3

12. Ogunsola, A., U. Reggiani, and L. Sandrolini, "Modelling shielding properties of concrete," 17th International Zurich Symposium on Electromagnetic Compatibility 2006, EMC-Zurich 2006, 34-37, Feb. 27-Mar. 3, 2006.

13. Lagarkov, A. N. and A. K. Sarychev, "Electromagnetic properties of composites containing elongated conducting inclusions," Phys. Rev. B, Vol. 53, No. 10, 6318-6336, Mar. 1996.
doi:10.1103/PhysRevB.53.6318