1. Shirman, Y. D., "Computer Simulation of Aerial Target Radar Scattering, Recognition, Detection, and Tracking," Artech House, Boston, 111-124, 2002. Google Scholar
2. Ding, J. J., "Target Recognition Techniques of Surveillance Radar," National Defense Industry Press, 40-41, 2008. Google Scholar
3. Ghadaki, H. and R. Dizaji, "Target track classification for airport surveillance radar (ASR)," Proceedings of IEEE Conference on Radar,, 24-27, 2006. Google Scholar
4. Chan, , S. C. and K. C. Lee, "Radar target identification by kernel principal component analysis on RCS," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 1, 64-74, 2012. Google Scholar
5. Lin, Q. S., W. D. Hu, H. Yu, et al. "A study of target classification method based on low-resolution radar return sequences image profile," Modern Radar, Vol. 27, No. 3, 24-28, 2005. Google Scholar
6. Chen, W. T., C. R. Xu, and Z. P. Chen, "Low-resolution radar target recognition based on gray-level map features," Modern Radar, Vol. 28, No. 9, 48-50, 2006. Google Scholar
7. Leung, H. and J. F. Wu, "Bayesian and Dempster-Shafer target identification for radar surveillance," IEEE Transactions on Aerospace and Electronic Systems, Vol. 36, No. 2, 432-447, 2000. Google Scholar
8. Zhang, H. H., W. Wang, and W. D. Jiang, "Aircraft target classification based on registration information for low-resolution radar," Systems Engineering and Electronics,, Vol. 26, No. 4, 488-490, 2004. Google Scholar
9. Pouliguen, P., L. Lucas, F. Muller, et al. "Calculation and analysis of electromagnetic scattering by helicopter rotating blades," IEEE Transactions on Antennas and Propagation, Vol. 50, 1193-1408, 2002. Google Scholar
10. Bell, , M. R. and R. A. Grubbs, "JEM modeling and measurement for radar target identification," IEEE Transactions on Aerospace and Electronic Systems, Vol. 29, 73-87, 1993. Google Scholar
11. Piazza, E., "Radar signals analysis and modellization presence of JEM application in the civilian ATC radars," IEEE Aerospace and Electronic Systems Magazine, Vol. 14, 35-40, 1999. Google Scholar
12. Martin, J. and B. Mulgrew, "Analysis of the theoretical radar return signal from aircraft propeller blades," Proceedings of IEEE International Conference on Radar, 569-572, 1990. Google Scholar
13. Yang, S. and S. Yeh, "Electromagnetic backscattering from aircraft propeller blades," EEE Transactions on Magnetics, Vol. 33, 1432-1435, 1997. Google Scholar
14. Martin, J. and B. Mulgrew, "Analysis of the effects of blade pitch on the radar return signal from rotating aircraft blades," Proceedings of IET International Radar Conference,, 446-449, 1992. Google Scholar
15. Yoon, S., B. Kim, and Y. Kim, "Helicopter classification using time-frequency analysis," Electronics Letters, Vol. 36, 1871-1872, 2000. Google Scholar
16. Chen, F., H. W. Liu, L. Du, et al. "Target classification with low-resolution radar based on dispersion situations of eigenvalue spectra," Science China: Information Sciences, Vol. 53, 1446-1460, 2010. Google Scholar
17. Chen, V. C., F. Y. Li, S. S. Ho, et al. "Micro-Doppler effect in radar: Phenomenon, model, and simulation study," IEEE Transactions on Aerospace and Electronic Systems, Vol. 42, No. 1, 2-21, 2006. Google Scholar
18. Zhuang, Z. W., Y. X. Liu, and X. Li, "The achievements of target characteristic with micro-motion," Acta Electronica Sinica, Vol. 35, No. 3, 520-525, 2007. Google Scholar
19. Ni, J., S. Y. Zhang, H. F. Miao, et al. "Target classification of low-resolution radar based on fractional Brown feature," Modern Radar, Vol. 33, No. 6, 46-48, 2011. Google Scholar
20. Li, Q. S., W. X. Xie, and C. Luo, "Identification of aircraft targets based on multifractal spectrum features," Proceedings of IEEE International Conference on Signal Processing, 1821-1824, 2012. Google Scholar
21. Li, Q. S. and W. X. Xie, "Target classification with low-resolution surveillance radars based on multifractal features," Progress In Electromagnetics Research B, Vol. 45, 291-308, 2012. Google Scholar
22. Kamijo, K. and A. Yamanouchi, "Signal processing using fuzzy fractal dimension and grade of fractality-Application to fluctuations in seawater temperature," Proceedings of IEEE Symposium on Computational Intelligence in Image and Signal Processing, 133-138, 2007. Google Scholar
23. "Time series analysis for altitude structure using local fractal dimension --- An example of seawater temperature fluctuation around Izu Peninsula,", Technical Report of IEICE, NLP2004-3, 2004. Google Scholar
24. Ding, J. J. and X. D. Zhang, "Studies of analysis of JEM signatures and classification of targets in the conventional radar," Journal of Electronics and Information Technology,, Vol. 25, 956-962, 2003. Google Scholar
25. Elshafei, M., S. Akhtar, and M. S. Ahmed, "Parametric models for helicopter identification using ANN," IEEE Transactions on Aerospace and Electronic Systems, Vol. 36, 1242-1252, 2000. Google Scholar
26. Melendez, G. J. and S. B. Kesler, "Spectrum estimation by neural networks and their use for target classification by radar," Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, 3615-3618, 1995. Google Scholar
27. Moses, R. L. and J. W. Carl, "Autoregressive modeling of radar data with application to target identification," Proceedings of the 1988 IEEE National Radar Conference, 220-224, 1988. Google Scholar
28. Pellegrini, S. P. F. and C. S. Pardini, "Radar signals analysis oriented to target characterization applied to civilian ATC radar," Proceedings of IET International Conference Radar, 438-445, 1992. Google Scholar
29. Stove, A., "A Doppler-based target classifier using linear discriminants and principal components," Proceedings of IET Seminar on High Resolution Imaging and Target Classification, 171-176, 2006. Google Scholar
30. Jahangir, M., K. M. Pointing, and J. W. O'Loghlen, "A robust Doppler classi¯cation technique based on hidden Markov models," Proceedings of IEEE International Conference on Radar,, Vol. 162, No. 166, 2002. Google Scholar
31. Jahangir, M., K. M. Pointing, and J. W. O'Loghlen, "Correction to robust Doppler classification technique based on hidden Markov models," Proceedings of IEE International Conference on Radar, Sonar and Navigation, Vol. 150, No. 5, 2003. Google Scholar
32. Ji, H. B., J. Li, and W. X. Xie, "Bispectrum based radar targetclassification," Proceedings of IEEE International Conference on Signal Processing, 419-422, 1998. Google Scholar
33. Andric, M., Z. Durovic, and B. Zrnic, "Ground surveillance radar target classification based on fuzzy logic approach," Proceedings of IEEE International Conference on Computer as a Tool, 1390-1392, 2005. Google Scholar
34. Dullard, , B. D. and P. C. Dowdy, "Pulse Doppler signature of a rotary wing aircraft," IEEE Aerospace and Electronic Systems Magazine, Vol. 36, 28-30, 1991. Google Scholar
35. Duda, R. O., P. E. Hart, and D. G. Stork, Pattern Classification, 2nd Ed., 259-264, John Wiley and Sons, 2001.