Vol. 30
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-04-18
Scintillation Index of a Gaussian Schell-Model Beam on Slant Atmospheric Turbulence
By
Progress In Electromagnetics Research M, Vol. 30, 153-165, 2013
Abstract
Based on the altitude-dependent model of the ITU-R slant atmospheric turbulence structure constant model, we present scintillation index calculations for a partially coherent Gaussian Schell-model (GSM) beam under all irradiance fluctuation conditions. The longitudinal and radial components of the scintillation index are treated separately. Our results correctly reduce to the result of the horizontal path with atmospheric structure constant fixed; and simplify to a fully coherent Gaussian beam with source coherence parameter ζ representing unit. The numerical conclusions indicate that within specific source and parameter ranges, a partially coherent GSM beam is capable of offering less scintillation in comparison with the full coherent Gaussian beam. Before the maximum value of the scintillation, the scintillation index of the partially coherent GSM beam will decrease with the increased altitude. However the off axis radial scintillation index will vanish when the Rytov variance is infinity.
Citation
Ning-Jing Xiang, and Zhen-Sen Wu, "Scintillation Index of a Gaussian Schell-Model Beam on Slant Atmospheric Turbulence," Progress In Electromagnetics Research M, Vol. 30, 153-165, 2013.
doi:10.2528/PIERM12123007
References

1. Andrews, L. C. and R. L. Phillips, Laser Beam Propagation through Random Media, SPIE Press, 1998.

2. Banakh, V. A. and V. L. Mironov, Lidar in a Turbulent Atmosphere, Artech House, 1987.

3. Bufton, J., "Scintillation statistics measured in an earth-space-earth retroreflector link," Appl. Opt., Vol. 16, 2654-2660, 1977.
doi:10.1364/AO.16.002654

4. Bufton, J., R. Iyer, and L. Taylor, "Scintillation statistics caused by atmospheric turbulence and speckle in satellite laser ranging," Appl. Opt., Vol. 16, 2408-2412, 1977.
doi:10.1364/AO.16.002408

5. Goodman, J. W., Statistical Optics, Wiley, 1985.

6. Lawrence, T. W., D. M. Goodman, E. M. Johansson, and J. P. Fitch, "Speckle imaging of satellites at the U.S. Air Force Maui Optical Station," Appl. Opt., Vol. 31, 6307-6321, 1992.
doi:10.1364/AO.31.006307

7. Labreyrie, A., "Attainment of diffraction-limited resolution in large telescopes by Fourier analysing speckle patterns in star images," Astron. Astrophys., Vol. 6, 85-87, 1970.

8. Tatarskii, V. I., Wave Propagation in a Turbulent Medium, McGraw-Hill, 1961.

9. Chernov, L. A., Wave Propagation in a Random Medium, McGraw-Hill, 1960.

10. Ishimaru, A., Wave Propagation and Scattering in Random Media, Academic Press, 1978.

11. Gracheva, M. E. and A. S. Gurvich, "Strong fluctuations in the intensity of light propagated through the atmosphere close to the earth," Izvestiya VUZ Radiofizika, Vol. 8, 717-724, 1965.

12. Gochelashvili, K. S. and V. I. Shishov, "Saturated fluctuations in the laser radiation intensity in a turbulent medium," Sov. Phys. JETP, Vol. 39, 605-609, 1974.

13. Fante, R. L., "Inner-scale size effect on the scintillations of light in the turbulent atmosphere," J. Opt. Soc. Am., Vol. 73, 277-281, 1983.
doi:10.1364/JOSA.73.000277

14. Frehlich, R. G., "Intensity covariance of a point source in a random medium with a Kolmogorov spectrum and an inner scale of turbulence," J. Opt. Soc. Am. A, Vol. 4, 360-365, 1987.
doi:10.1364/JOSAA.4.000360

15. Hopen, C. Y. and L. C. Andrews, "Optical scintillation of a Gaussian beam in moderate-to-strong irradiance fluctuations," Proc. SPIE, Vol. 4, 142-150, 1999.

16. Andrews, L. C., R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications, SPIE, 2001.
doi:10.1117/3.412858

17. Wu, Z. S. and H. Y. Wei, "Study on scintillation considering inner- and out-scales for laser beam propagation on the slant path through the atmospheric turbulence," Progress In Electromagnetics Research, Vol. 80, 277-293, 2008.
doi:10.2528/PIER07112505

18. Li, J., Y. Chen, S. Xu, Y. Wang, M. Zhou, Q. Zhao, Y. Xin, and F. Chen, "Average intensity and spreading of partially coherent four-petal Gaussian beams in turbulent atmosphere," Progress In Electromagnetics B, Vol. 24, 241-261, 2010.
doi:10.2528/PIERB10062306

19. Wang, F., Y. Cai, H. T. Eyyuboglu, and Y. K. Baykal, "Average intensity and spreading of partially coherent standard and elegant Laguerre-Gaussian beams in turbulent atmosphere," Progress In Electromagnetics Research, Vol. 103, 33-56, 2010.
doi:10.2528/PIER10021901

20. Beran, M. J. and A. M. Whitman, "Scintillation index calculations using an altitude-dependent structure constant," Appl. Opt., Vol. 27, 2178-2182, 1988.
doi:10.1364/AO.27.002178

21. Baker, G. J., "Gaussian beam weak scintillation: Low-order turbulence effects and applicability of the Rytov method," J. Opt. Soc. Am. A, Vol. 23, 395-417, 2006.
doi:10.1364/JOSAA.23.000395

22. Charnotskii, M., "Beam scintillations for ground-to-space propagation. Part I: Path integrals and analytic techniques," J. Opt. Soc. Am. A, Vol. 27, 2169-2179, 2010.
doi:10.1364/JOSAA.27.002169

23. Chu, X., "Evolution of beam quality and shape of HermitGaussian beam in non-Kolmogorov turbulence," Progress In Electromagnetics Research, Vol. 120, 339-353, 2011.

24. Li, Y.-Q., Z.-S.Wu, and L.-G.Wang, "Polarization characteristics of a partially coherent Gaussian Schell-model beam in slant atmospheric turbulence," Progress In Electromagnetics Research, Vol. 121, 453-468, 2011.
doi:10.2528/PIER11092201

25. Baykal, Y. and H. T. Eyyuboglu, "Scintillation index of flat-topped Gaussian beams," Appl. Opt., Vol. 45, 7066-7066, 2006.
doi:10.1364/AO.45.003793

26. Eyyuboglu, H. T. and Y. Baykal, "Scintillation characteristics of cosh-Gaussian beams," Appl. Opt., Vol. 46, 1099-1106, 2007.
doi:10.1364/AO.46.001099

27. Eyyuboglu, H. T., Y. Baykal, and Y. Cai, "Scintillation calculations for partially coherent general beams via extended Huygens-Fresnel integral and self-designed Matlab function," Appl. Phys. B, Vol. 100, 597-609, 2010.
doi:10.1007/s00340-010-4125-4

28. Miller, W. B., J. C. Ricklin, and L. C. Andrews, "Scintillation of initially convergent Gaussian beams in the vicinity of the geometric focus," Appl. Opt., Vol. 34, 7066-7073, 1995.
doi:10.1364/AO.34.007066

29. Rickin, J. C. and F. M. Davidson, "Atmospheric optical communication with a Gaussian Schell beam," J. Opt. Soc. Am., Vol. 20, 856-863, 2003.
doi:10.1364/JOSAA.20.000856

30. Andrews, L. C., W. B. Miller, and J. C. Ricklin, "Spatial coherence of a Gaussian beam in weak and strong optical turbulence," J. Opt. Soc. Am. A, Vol. 11, 1653-1660, 1994.
doi:10.1364/JOSAA.11.001653

31. Young, C. Y. and L. C. Andrews, "Effects of a modified spectral model on the spatial coherence of a laser beam," Waves Random Media, Vol. 4, 385-397, 1994.
doi:10.1088/0959-7174/4/3/011

32. Ricklin, J. C., W. B. Miller, and L. C. Andrews, "Effective beam parameters and the turbulent beam waist for initially convergent Gaussian beams," Appl. Opt., Vol. 34, 7059-7065, 1995.
doi:10.1364/AO.34.007059

33. Korotkova, O., "A model for a partially coherent Gaussian beam in atmospheric turbulence with applications for lasercom and lidar systems,", M.S. University of Central Florida, 2003.

34. ITU-R Document 3J/31-E "On propagation data and prediction methods required for the design of space-to-earth and earth-to-space optical communication systems," Radiocommunication Study Group Meeting, International Telecommunication Union, 2001.