1. Lakhtakia, A., V. K. Varadan, and V. V. Varadan, Lecture Note in Physics: Time-harmonic Electromagnetic Fields in Chiral Media, Springer, Heidelberg, Berlin, 1989.
2. Xia, Y., Y. Zhoua, and Z. Tang, "Chiral inorganic nanoparticles: Origin, optical properties and bioapplications," Nanoscale, Vol. 3, 1374-1382, 2011.
doi:10.1039/c0nr00903b
3. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media, Artech House Publishers, , Boston, MA, 1994.
4. Wongkasem, N. and A. Akyurtlu, "Light splitting effects in chiral metamaterials," J. Opt., Vol. 12, 035101, 2010.
doi:10.1088/2040-8978/12/3/035101
5. Sonsilphong, A. and N. Wongkasem, "Novel technique for high refractive index manifestation," International Conference on Electromagnetics in Advanced Applications, 536-539, 2011.
6. Wongkasem, N., A. Akyurtlu, J. Li, A. Tibolt, Z. Kang, and W. D. Goodhue, "Novel broadband terahertz negative refractive index metamaterials: Analysis and experiment," Progress In Electromagnetics Research, Vol. 64, 205-218, 2006.
doi:10.2528/PIER06071104
7. Gansel, J. K., M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. V. Freymann, S. Linden, and M.Wegener, "Gold helix photonic metamaterial as broadband circular polarizer," Science, Vol. 325, 1513, 2009.
doi:10.1126/science.1177031
8. Gansel, J. K., M. Wegener, S. Burger, and S. Linden, "Gold helix photonic metamaterials: A numerical parameter study," Optics Express, Vol. 18, 1059, 2010.
doi:10.1364/OE.18.001059
9. Yang, Z. Y., M. Zhao, P. X. Lu, and Y. F. Lu, "Ultrabroadband optical circular polarizers consisting of double-helical nanowire structures," Optics Letters, Vol. 35, 2588-2590, 2010.
doi:10.1364/OL.35.002588
10. Yang, Z. Y., M. Zhao, and P. X. Lu, "How to improve the signal-to-noise ratio for circular polarizers consisting of helical metamaterials?," Optics Express, Vol. 19, 4255-4260, 2011.
doi:10.1364/OE.19.004255
11. Ma, X., C. Huang, M. Pu, C. Hu, Q. Feng, and X. Luo, "Multi-band circular polarizer using planar spiral metamaterial structure," Optics Express, Vol. 20, 16050-16058, 2012.
doi:10.1364/OE.20.016050
12. Ma, X., C. Huang, M. Pu, Y. Wang, Z. Zhao, C. Wang, and X. Luo, "Dual-band asymmetry chiral metamaterial based on planar spiral structure," Appl. Phys. Lett., Vol. 101, 161901, 2012.
doi:10.1063/1.4756901
13. Wang, B., T. Koschny, and C. M. Soukoulis, "Wide-angle and polarization independent chiral metamaterials absorbers," Phys. Rev. B., Vol. 80, 033108, 2009.
doi:10.1103/PhysRevB.80.033108
14. Plum, E., J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, "Metamaterial with negative index due to chirality," Phys. Rev. B, Vol. 79, 035407, 2009.
doi:10.1103/PhysRevB.79.035407
15. Zhou, J., J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, "Negative refractive index due to chirality," Phys. Rev. B, Vol. 79, 121104(R), 2009.
16. Li, Z., R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, "Chiral metamaterials with negative refractive index based on four `U' split ring resonators," Appl. Phys. Lett., Vol. 97, 081901, 2010.
doi:10.1063/1.3457448
17. Zhao, R., L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, "Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index," Phys. Rev. B, Vol. 83, 035105, 2011.
doi:10.1103/PhysRevB.83.035105
18. Wang, B., J. Zhou, T. Koschny, and C. M. Soukoulis, "Nonplanar chiral metamaterials with negative index," Appl. Phys. Lett., Vol. 94, 151112, 2009.
doi:10.1063/1.3120565
19. Wongkasem, N., C. Kamtongdee, A. Akyurtlu, and K. Marx, "Artificial multiple helices: EM and polarization properties," J. Opt., Vol. 12, 075102, 2010.
doi:10.1088/2040-8978/12/7/075102
20. Sonsilphong, A. and N. Wongkasem, "Three-dimensional artificial double helices with high negative refractive index," J. Opt., Vol. 14, 105103, 2012.
doi:10.1088/2040-8978/14/10/105103
21. Raos, G., "Degrees of chirality in helical structures," Macromol. Theory Simul., Vol. 11, 739-750, 2002.
doi:10.1002/1521-3919(20020901)11:7<739::AID-MATS739>3.0.CO;2-I
22. Green, M. M., N. C. Peterson, T. Sato, A. Teramoto, R. Cook, and S. Lifson, "A helical polymer with a cooperative response to chiral information," Science, Vol. 268, 1860-1866, 1995.
doi:10.1126/science.268.5219.1860
23. Sonsilphong, A. and N. Wongkasem, "Transmission properties in chiral metamaterials," International Journal of Physical Sciences, Vol. 7, No. 21, 2829-2837, 2012.
24. CST Microwave Studio, http://www.cst.com/.
25. Wang, B., J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, "Chiral metamaterials: Simulations and experiments," J. Opt. A: Pure Appl. Opt., Vol. 11, 114003, 2009.
doi:10.1088/1464-4258/11/11/114003
26. Ranga, Y., L. Matekovits, K. P. Esselle, and A. R. Weily, "Multi-octave frequency selective surface reflector for ultrawideband antennas," IEEE Antennas and Wireless Propagat. Letters, Vol. 10, 219-222, 2011.
doi:10.1109/LAWP.2011.2130509
27. Balanis, C. A., Advanced Engineering Electromagnetic, John Wiley & Sons, 1989.
28. Orfanidis, S. J., "Electromagnetic waves and antennas,", Online URL: http://www.ece.rutgers.edu/»orfanidi/ewa/.
29. "IEEE standard definitions of terms for antennas,", IEEE Std 145-1983, Revised IEEE Std 145-1993, 1993.