Vol. 43
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2013-08-28
Compact Differential Bandpass Filter with Improved in-Band Common-Mode Suppression with Loaded T-Shaped Resonators
By
Progress In Electromagnetics Research C, Vol. 43, 79-91, 2013
Abstract
Compact symmetrical four-ports differential bandpass filters with good common-mode suppressions are proposed in this work. The presented filters are designed based on half-wavelength coupled resonators with compact size, good filtering responses for differential-mode, and wide common-mode suppression range. To further improve the common-mode performances within the differential-mode passband, T-shaped resonators are loaded at the center of the structure. It is noted that, the size of filter does not become larger with loaded T-shaped resonators. Both these two filters are centered at 1.8 GHz for Global System Mobile Communication (GSM) with 7.8% fractional bandwidth. For differential-mode, the insertion is less than -1.2 dB in the 3-dB passband and the matching is better than -20 dB. Good stopband characteristics are also obtained with more than -20 dB out-of-band attenuation from dc to 1.6 GHz in the lower stopband and from 2.0 to 4.8 GHz in the upper stopband. For common-mode, better than -15 dB suppression is achieved within dc to 6.2 GHz and with the help of the loaded T-shaped resonators, the rejection in the differential-mode passband is improved to be more than -40 dB. Theory analysis, simulation, and measurement show good agreement with each other.
Citation
Hui Wang Xuan Li Wei Kang Chen Tan Wen Wu Guo Yang , "Compact Differential Bandpass Filter with Improved in-Band Common-Mode Suppression with Loaded T-Shaped Resonators," Progress In Electromagnetics Research C, Vol. 43, 79-91, 2013.
doi:10.2528/PIERC13072701
http://www.jpier.org/PIERC/pier.php?paper=13072701
References

1. Wu, X. H. and Q. X. Chu, "Compact differential ultra-wideband bandpass filter with common-mode suppression," IEEE Microw. Wireless Compon. Lett., Vol. 2, No. 9, 456-458, 2012.

2. Lim, T. B. and L. Zhu, "Highly selective differential-mode wideband bandpass filter for UWB application," IEEE Microw. Wireless Compon. Lett., Vol. 21, No. 3, 133-135, 2011.

3. Lim, T. B. and L. Zhu, "A differential-mode wideband bandpass filter on microstrip line for UWB application," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 10, 632-634, 2009.

4. Feng, W. J., W. Q. Che, Y. L. Ma, and Q. Xue, "Compact wideband differential bandpass filters using half-wavelength ring," IEEE Microw. Wireless Compon. Lett., Vol. 23, No. 2, 81-83, 2013.

5. Lee, C. H., C. I. G. Hsu, H. H. Chen, and Y. S. Lin, "Balanced single- and dual-band BPFs using ring resonators," Progress In Electromagnetics Research, Vol. 116, 333-346, 2011.

6. Wang, H., W. Kang, G. Yang, and W. Wu, "A wideband differential bandpass filter based on T-shaped stubs and single ring resonator," Progress In Electromagnetics Research Letters, Vol. 40, 39-48, 2013.

7. Zhu, H. T., W. J. Feng, W. Q. Che, and Q. Xue, "Ultra-wideband differential bandpass filter based on transversal signal-interference concept," Electron. Lett., Vol. 47, No. 18, 1033-1035, 2011.

8. Shi, W. W. Choi, W. Q. Che, K. W. Tam, and Q. Xue, "Ultra-wideband differential bandpass filter with narrow notched band and improved common-mode suppression by DGS," IEEE Microw. Wireless Compon. Lett., Vol. 22, No. 4, 185-187, 2012.

9. Wu, S. M., C. T. Kuo, P. Y. Lyu, Y. L. Shen, and C. I. Chien, "Miniaturization design of full differential bandpass filter with coupled resonators using embedded passive device technology," Progress In Electromagnetics Research, Vol. 121, 365-379, 2011.

10. Wu, S. M., C. T. Kuo, and C. H. Chen, "Very compact full differential bandpass filter with transformer integrated using integrated passive device technology," Progress In Electromagnetics Research, Vol. 113, 251-267, 2011.

11. Wu, C. H., C. H. Wang, and C. H. Chen, "Balanced coupled-resonator bandpass filters using multisection resonators for ommon-mode suppression and stopband extension," IEEE Trans. Microwave Theory & Tech., Vol. 55, No. 8, 17561763, 2007.

12. Wu, C. H., C. H.Wang, and C. H. Chen, "Novel balanced coupled-line bandpass filters with common-mode noise suppression," IEEE Trans. Microwave Theory & Tech., Vol. 55, No. 2, 287-295, 2007.

13. Shi, J. and Q. Xue, "Balanced bandpass filters using center-loaded half-wavelength resonators," IEEE Trans. Microwave Theory & Tech., Vol. 58, No. 4, 970-977, 2010.

14. Niu, J. X. and X. L. Zhou, "Analysis of balanced composite right/left handed structure based on different dimensions of complementary split ring resonators," Progress In Electromagnetics Research, Vol. 74, 341-351, 2007.

15. Kim, Y. and S. Sim, "Symmetric coupled composite right-/left-handed transmission line in common-/differential-mode operation," Progress In Electromagnetics Research Letters, Vol. 40, 1-8, 2013.

16. Lee, C. H., C. I. G. Hsu, and C. J. Chen, "Band-notched balanced UWB BPF with stepped-impedance slotline multi-mode resonator," IEEE Microw. Wireless Compon. Lett., Vol. 22, No. 4, 182-184, 2012.

17. Shi, J. and Q. Xue, "Novel balanced dual-band bandpass filter using coupled stepped-impedance resonators," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 1, 19-21, 2010.

18. Lin, S. C., C. Y, and Yeh, "Stopband-extenede balanced filters using both λ/4 and λ/2 SIRs with common-mode suppression and improved passband selectivity," Progress In Electromagnetics Research, Vol. 128, 215-228, 2012.

19. Cho, Y. H. and S. W. Yun, "Design of balanced dual-band bandpass filters using asymmetrical coupled lines," IEEE Trans. Microwave Theory & Tech., Vol. 61, No. 8, 2814-2820, 2013.

20. Lee, C. H., C. I. G. Hsu, and C. C. Hsu, "Balanced dual-band BPF with stub-loaded SIRs for common-mode suppression," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 2, 70-72, 2010.

21. Wang, X. H., H. L. Zhang, and B. Z. Wang, "A novel ultra-wideband differential filter based on microstrip line structures," IEEE Microw. Wireless Compon. Lett., Vol. 23, No. 3, 128-130, 2013.

22. Wang, X. H., Q. Xue, and W. W. Choi, "A novel ultra-wideband differential filter based on double-sided parallel-strip line," IEEE Microw. Wireless Compon. Lett., Vol. 20, No. 8, 471-473, 2010.

23. Xia, B., L. S. Wu, and J. F. Mao, "An ultra-wideband balanced bandpass filter based on defected ground structures," Progress In Electromagnetics Research C, Vol. 25, 133-144, 2012.

24. Fernandez-Prieto, A., J. Martel, F. Medina, F. Mesa, S. Qian, J. S. Hong, J. Naqui, and F. Martin, "Dual-band differential filter using broadband common-mode rejection artificial transmission line," Progress In Electromagnetics Research, Vol. 139, 779-797, 2013.

25. Reed, J. and G. J. Wheeler, "A method of analysis of symmetrical four-port networks," IRE Trans. Microwave Theory & Tech., Vol. 4, No. 4, 246-252, 1956.