Vol. 34
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-12-25
Analysis of Scattering from Dielectric Rough Surfaces by Hybrid FEM/Bie
By
Progress In Electromagnetics Research M, Vol. 34, 107-116, 2014
Abstract
To study electromagnetic scattering from dielectric rough surfaces, a hybrid finite element method (FEM) combined with boundary integral equations (BIE) is extended to the scattering problem with two half-open regions. Integral boundaries, as truncated boundaries of the FEM region, are employed as artificial boundaries of dielectric rough surfaces above and below the rough surface. In the hybrid method, conformal integral boundaries are introduced to reduce the computational region. The validity of our hybrid method is examined by available solutions got from the method of moment (MoM), which indicates the feasibility of our scheme in simulating the scattering from dielectric rough surfaces. Bistatic scattering coefficient from dielectric rough surfaces is studied in this paper for both polarizations, and functional dependence upon different parameters are numerically discussed.
Citation
Runwen Xu, Li-Xin Guo, and Xiao Meng, "Analysis of Scattering from Dielectric Rough Surfaces by Hybrid FEM/Bie," Progress In Electromagnetics Research M, Vol. 34, 107-116, 2014.
doi:10.2528/PIERM13112201
References

1. Ji, W. J. and C. M. Tong, "Bistatic scattering from two-dimensional dielectric ocean rough surface with a PEC object partially embedded by using the G-SMCG method," Progress In Electromagnetics Research, Vol. 105, 119-139, 2010.
doi:10.2528/PIER10041101

2. Li, Z.-X., "Bistatic scattering from rough dielectric soil surface with a conducting object with arbitrary closed contour partially buried by using the FBM/SAA method," Progress In Electromagnetics Research, Vol. 76, 253-274, 2007.
doi:10.2528/PIER07071501

3. Barka, A. and P. Caudrillier, "Domain decomposition method based on generalized scattering matrix for installed performance of antennas on aircraft," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 6, 1833-1842, 2007.
doi:10.1109/TAP.2007.898602

4. Wang, R., L. Guo, J. Li, and X. Liu, "Investigation on transient electromagnetic scattering from a randomly rough surface and the perfect electric conductor target with an arbitrary cross section above it ," Science in China, Series G: Physics, Mechanics and Astronomy, Vol. 52, 665-675, 2009.
doi:10.1007/s11433-009-0043-z

5. Li, J., L. X. Guo, and H. Zeng, "FDTD method investigation on the polarimetric scattering from 2-D rough surface," Progress In Electromagnetics Research, Vol. 101, 173-188, 2010.
doi:10.2528/PIER09120104

6. Botha, M. M. and D. B. Davidson, "Rigorous, auxiliary variable-based implementation of a second-order ABC for the vector FEM," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 11, 3499-3504, 2006.
doi:10.1109/TAP.2006.884300

7. Zhai, Y. B., X. W. Ping, and T. J. Cui, "Scattering from complex bodies of revolution using a high-order mixed ¯nite element method and locally-conformal perfectly matched layer," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 5, 1761-1764, 2011.
doi:10.1109/TAP.2011.2122224

8. Liu, P. and Y.-Q. Jin, "Numerical simulation of bistatic scattering from a target at low altitude above rough sea surface under an EM-wave incidence at low grazing angle by using the finite element method," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 5, 1205-1210, 2004.
doi:10.1109/TAP.2004.827497

9. Ozgun, O. , "Monte Carlo-based characteristic basis finite element method (MC-CBFEM) for numerical analysis of scattering from objects on/above rough sea surfaces," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 3, 769-783, 2012.
doi:10.1109/TGRS.2011.2162650

10. Chen, Y., S. Yang, S. He, and Z. Nie, "Fast analysis of microstrip antennas over a frequency band using an accurate MoM matrix interpolation technique," Progress In Electromagnetics Research, Vol. 109, 301-324, 2010.
doi:10.2528/PIER10081107

11. Alavikia, B. and O. M. Ramahi, "Electromagnetic scattering from cylindrical objects above a conductive surface using a hybrid ¯niteelement-surface integral equation method," Journal of the Optical Society of America A: Optics and Image Science, and Vision, Vol. 28, 2510-2518, 2011.
doi:10.1364/JOSAA.28.002510

12. Cui, Z. W., Y. P. Han, C. Y. Li, and W. J. Zhao, "Cui, Z. W., Y. P. Han, C. Y. Li, and W. J. Zhao, E±cient analysis of scattering from multiple 3-D cavities by means of a FE-BI-DDM method," Progress In Electromagnetics Research, Vol. 116, 425-439, 2011.

13. Li, J., L. X. Guo, Q. He, and B. Wei, "Electromagnetic scattering from randomly rough surfaces with hybrid FEM/BIE," Chinese Physics Letters, Vol. 28, 104101-1-104101-4, 2011.

14. Ping, X. W., T. J. Cui, and W. B. Lu, "The combination of BCGSTAB with multifrontal algorithm to solve FEBI-MLFMA linear systems arising from inhomogeneous electromagnetic scattering problems," Progress In Electromagnetics Research, Vol. 93, 91-105, 2009.
doi:10.2528/PIER09050604

15. Thorsos, E. I., "The validity of the Kirchho® approximation for rough surface scattering using a Gaussian roughness spectrum," Journal of the Acoustical Society of America, Vol. 83, No. 1, 78-92, 1988.
doi:10.1121/1.396188

16. Jin, J. M., The Finite Element Method in Electromagnetics, John Wiley, New York, 2002.