Vol. 35
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-04-09
Information Content Analysis for the Millimeter and Sub-Millimeter Wave Atmospheric Sounding Data from Geostationary Orbit
By
Progress In Electromagnetics Research M, Vol. 35, 183-191, 2014
Abstract
Operating frequencies for passive remote sensing have been extended to millimeter and sub-millimeter wave regions in recent years. Due to relatively shorter wavelengths, narrower beam widths can be achieved under antenna size limitations. In turn, better spatial resolution can be achieved, which is especially important for sensors in geostationary orbit. There are several mission proposals for millimeter and sub-millimeter wave payloads in geostationary orbit, e.g., Geostationary Observatory for Microwave Atmospheric Sounding (GOMAS) proposed by European countries, Geosynchronous Microwave (GEM) Sounder/Imager Observation System proposed by USA, the next generation Chinese geostationary orbit meteorological satellite FY-4, etc. The feasibility study of geostationary microwave payloads and simulation of millimeter and sub-millimeter wave atmospheric sounding data is currently underway. Many measures evaluate the efficacy of atmospheric sounding data, one of which is the Degrees of Freedom for Signal (DFS). It is independent of specific regression algorithm thus able to offer an objective measure for performance comparison and channel parameter optimization. In this paper, the DFS of a set of millimeter wave (50~70 GHz, 118 GHz, 183 GHz) and sub-millimeter wave (380 GHz, 425 GHz) sounding channels is analyzed. The DFS improvement with increasing bandwidth is given; results suggest that broader channel bandwidth will improve the efficacy and retrieval performance of the future geostationary orbit millimeter and sub-millimeter wave radiometers.
Citation
Haibo Zhao Cheng Zheng Yongfang Zhang Bin Liang Naiming Ou Jungang Miao , "Information Content Analysis for the Millimeter and Sub-Millimeter Wave Atmospheric Sounding Data from Geostationary Orbit," Progress In Electromagnetics Research M, Vol. 35, 183-191, 2014.
doi:10.2528/PIERM14021907
http://www.jpier.org/PIERM/pier.php?paper=14021907
References

1., WMO report SAT-21, "Statement of guidance regarding how well satellite capabilities meet WMO user requirements in several application areas,", WMO TD No. 992, Geneva, Switzerland, 2000.

2. Lambrigtsen, B. H., S. T. Brown, S. J. Dinardo, P. P. Kangaslahti, A. B. Tanner, and W. J.Wilson, "Progress in developing GeoSTAR --- A microwave sounder for GOES-R," Proceedings of SPIE, 1-9, Aug. 2005.

2. Carlstrom, A., J. Christensen, J. Embretsen, A. Emerich, and P. Maagt, "A geostationary atmospheric sounder for now-casting and short-range weather forecasting," Proceedings of SPIE, Vol. 5882, 1-4, 2009.

4. Gasiewski, A. J., A. Voronovich, B. L. Weber, B. Standkov, M. Klein, R. J. Hill, and J. W. Bao, "Geosynchronous microwave (GEM) sounder/imager observation system simulation," Proceedingss of IGARSS 2003, 1209-1211, Jul. 2003.

5. Bizzarri, B., A. J. Gasiewski, and D. Staelin, "Observing rain by millimetre --- Submillimetre wave sounding from geostationary orbit," Series on Advances in Global Change Research, Ch. 50, 675-692, Springer, New York, 2007.

6., "Statement of guidance regarding how well satellite capabilities meet WMO user requirements in several application areas,", WMO Report, WMO TD No. 992 (Sat-22), Geneva, Switzerland, 2000.
doi:10.1002/qj.49711649209

7. Eyre, J. R., "The information content of data from satellite sounding systems: A simulation study," Quarterly Journal of the Royal Meteorological Society, Vol. 116, 401-434, Dec. 2006.
doi:10.1175/1520-0450(1993)032<1092:EEDDIA>2.0.CO;2

8. Purser, R. J. and H.-L. Huang, "Estimating effective data density in a satellite retrieval or an objective analysis," Journal of Applied Meteorology, Vol. 32, 1092-1107, Jun. 1993.
doi:10.1007/BF01029788

9. Huang, H.-L. and R. J. Purser, "Objective measures of the information density of satellite data," Meteorology and Atmospheric Physics, Vol. 60, 105-117, Mar. 1996.
doi:10.1117/12.256110

10. Rodgers, C. D., "Information content and optimization of high spectral resolution measurements," Proceedings of SPIE, Vol. 2830, 136-147, Oct. 1996.

11. Klein, M. and A. J. Gasiewski, "The sensitivity of millimeter and sub-millimeter frequencies to atmospheric temperature and water vapor variations," Journal of Geophysical Research, Vol. 13, 17481-17511, Jul. 2000.
doi:10.1109/TGRS.2003.810926

12. Lipton, A. E., "Satellite sounding channel optimization in the microwave spectrum," IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, 761-781, Apr. 2003.
doi:10.1175/JAM2438.1

13. Prigent, C., J. R. Pardo, and W. B. Rossow, "Comparisons of the millimeter and submillimeter bands for atmospheric temperature and water vapor soundings for clear and cloudy skies," Journal of Applied Meteorology and Climatology, Vol. 45, 1622-1633, Dec. 2006.

14. Bizzarri, B., "Geostationary observatory for microwave atmospheric sounding," Report to the Second Call for Proposals for ESA Earth Explorer Opportunity Missions, 2002.

15. Borbas, E. E., S. W. Seemann, H.-L. Huang, J. Li, and W. P. Menzel, "Global profile training database for satellite regression retrievals with estimates of skin temperature and emissivity," Proceedings of the XIV. International ATOVS Study Conference, 763-770, May 2005.

16. Peckham, G. E., "Multiresolution analysis, entropic information and the performance of atmospheric sounding radiometers," Quarterly Journal of the Royal Meteorological Society, Vol. 126, 2933-2949, Apr. 2000.