Vol. 36
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-05-16
Nonparametric Rotational Motion Compensation Technique for High-Resolution ISAR Imaging via Golden Section Search
By
Progress In Electromagnetics Research M, Vol. 36, 67-76, 2014
Abstract
A novel rotational motion compensation algorithm for high-resolution inverse synthetic aperture radar (ISAR) imaging based on golden section search (GSS) method is presented. This paper focuses on the migration through cross-range resolution cells (MTCRRC) compensation, which requires rotation angle and center as priori information. The method is nonparametric and uses entropy criterion to estimate rotation angle and rotation center, which are used for rotational motion compensation. Experimental results show that the rotational motion in ISAR imaging can be effectively compensated. Moreover, the proposed method is robust and computationally more efficient compared to the parametric methods.
Citation
Yang Liu Jiangwei Zou Shi You Xu Zeng Ping Chen , "Nonparametric Rotational Motion Compensation Technique for High-Resolution ISAR Imaging via Golden Section Search," Progress In Electromagnetics Research M, Vol. 36, 67-76, 2014.
doi:10.2528/PIERM14031905
http://www.jpier.org/PIERM/pier.php?paper=14031905
References

1. Munoz-Ferreras, J. M. and F. Pérez-Martínez, "Uniform rotational motion compensation for inverse synthetic aperture radar with non-cooperative targets," IET Radar Sonar Navig., Vol. 2, No. 1, 25-34, Jan. 2008.
doi:10.1049/iet-rsn:20060170

2. Liu, J. H., X. Li, S. K. Xu, and Z. W. Zhuang, "ISAR imaging of non-uniform rotation targets with limited pulse via compressed sensing," Progress In Electromagnetics Research B, Vol. 41, 285-305, 2012.
doi:10.2528/PIERB12041715

3. Xing, M., R. Wu, J. Lan, and Z. Bao, "Migration through resolution cell compensation in ISAR imaging," IEEE Geosci. Remote Sens. Lett., Vol. 1, No. 2, 141-144, Apr. 2004.
doi:10.1109/LGRS.2004.824766

4. Lu, G. and Z. Zhou, "Compensation of scatterer migration through resolution cell in inverse synthetic aperture radar imaging," IEE Proc., Radar, Sonar Navig., Vol. 147, No. 2, 80-85, Apr. 2000.
doi:10.1049/ip-rsn:20000253

5. Hu, J. M., W. Zhou, Y. W. Fu, L. Xiang, and J. Ning, "Uniform rotational motion compensation for ISAR based on phase cancellation," IEEE Geosci. Remote Sens. Lett., Vol. 8, No. 4, 636-641, Jul. 2011.
doi:10.1109/LGRS.2010.2098841

6. Wang, Y. and Y. C. Jiang, "A novel algorithm for estimating the rotation angle in ISAR imaging," EEE Geosci. Remote Sens. Lett., Vol. 5, No. 4, 608-609, Oct. 2008.
doi:10.1109/LGRS.2008.2000955

7. Yeh, C. M., C. M., J. Xu, Y. N. Peng, and X. T. Wang, "Cross-range scaling for ISAR based on image rotation correlation," IEEE Geosci. Remote Sens. Lett., Vol. 6, No. 3, 597-601, Jul. 2009.

8. Li, X., H. Gu, and G. S. Liu, "A method for estimating the rotation angle of the ISAR image," Acta Electron. Sin., Vol. 28, No. 6, 44-47, Jun. 2000.

9. Zhang, W. C., Z. P. Chen, and B. Yuan, "Rotational motion compensation for wide-angle ISAR imaging based on integrated cubic phase function," IET International Radar Conference 2013, 14-16, Apr. 2013.

10. Tsai, C. H., J. Kolibal, and M. Li, "The golden section search algorithm for finding a good shape parameter for meshless collocation methods," Engineering Analysis with Boundary Elements, Vol. 34, No. 8, 738-746, Aug. 2010.
doi:10.1016/j.enganabound.2010.03.003

11. Chang, Y. C., "N-dimension golden section search: Its variants and limitations," 2nd International Conference on Biomedical Engineering and Informatics, BMEI' 09,, 17-19, Oct. 2009.

12. Mensa, D. L., High Resolution Radar Imaging, Artech House, MA, 1981.

13. Wang, J., X. Liu, and Z. Zhou, "Minimum-entropy phase adjustment for ISAR," IEE Proc. Radar Sonar Navig., Vol. 151, No. 4, 203-209, Aug. 2004.
doi:10.1049/ip-rsn:20040692

14. Pincus, S. M., "Approximate entropy as a measure of system complexity," Proc. Natl. Acad. Sci. USA Mathematics, Vol. 88, No. 4, 2297-2301, Mar. 1991.
doi:10.1073/pnas.88.6.2297

15. Kim, K. T. and H. T. Kim, "One-dimensional scattering centre extraction for efficient radar target classi¯cation," IEE Proc. Radar Sonar Navig., Vol. 146, No. 3, 147-158, Jun. 1999.
doi:10.1049/ip-rsn:19990321