Vol. 36
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-05-23
Space-Time Matrix Method for Mixed Near-Field and Far-Field Sources Localization
By
Progress In Electromagnetics Research M, Vol. 36, 131-137, 2014
Abstract
Mixed near-field and far-field sources localization problem has received significant attention recently in some practical applications, such as speaker localization using microphone arrays and guidance systems, etc. This paper presents a novel space-time matrix method to localize mixed near-field and far-field sources. Using the proposed method, both the direction-of-arrival (DOA) and range of a source can be estimated by the same eigen-pair of a defined spacetime matrix. Therefore, the pairing of the estimated angles and ranges is automatically determined. Compared with the previous work, the presented method offers a number of advantages over other recently proposed algorithms. For example, it can avoid not only parameters matching problem but also aperture loss problem. It has lower computational complexity since the proposed method does not require the high-order statistics or any parameter search. Simulation results show the performance of the proposed algorithm.
Citation
Ruiyan Du, Fulai Liu, and Jinkuan Wang, "Space-Time Matrix Method for Mixed Near-Field and Far-Field Sources Localization," Progress In Electromagnetics Research M, Vol. 36, 131-137, 2014.
doi:10.2528/PIERM14040203
References

1. Schimidt, R. O., "Multiple emitter location and signal parameter estimation," IEEE Transactions on Antennas and Propagation, Vol. 34, 276-280, 1986.
doi:10.1109/TAP.1986.1143830

2. Roy, R. and T. Kailath, "ESPRIT-estimation of signal parameters via rotational invariance techniques," IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 37, No. 7, 984-995, 1989.
doi:10.1109/29.32276

3. Liu, F. L., J. K. Wang, C. Y. Sun, and R. Y. Du, "Spatial differencing method for DOA estimation under the coexistence of both uncorrelated and coherent signals," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 4, 2052-2062, 2012.
doi:10.1109/TAP.2012.2186216

4. Huang, Y. D. and M. Barkat, "Near-field multiple sources localization by passive sensor array," IEEE Transactions on Antennas and Propagation, Vol. 39, 968-975, 1991.
doi:10.1109/8.86917

5. Grosicki, E., K. Abed-Meraim, and Y. Hua, "A weighted linear prediction method for near-field source localization," IEEE Transactions on Signal Processing, Vol. 53, No. 10, 3651-3660, 2005.
doi:10.1109/TSP.2005.855100

6. Zhi, W. and M. Y. W. Chia, "Near-field source localization via symmetric subarrays," IEEE Transactions on Signal Processing Letters, Vol. 14, No. 6, 409-412, 2007.
doi:10.1109/LSP.2006.888390

7. Wu, Y., H. C. So, and J. Li, "Passive localization of near-field sources with a polarization sensitive array," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 8, 2402-2408, 2007.
doi:10.1109/TAP.2007.901912

8. Liang, J. and D. Liu, "Passive localization of mixed near-field and far-field sources using two-stage MUSIC algorithm," IEEE Transactions on Signal Processing, Vol. 58, No. 1, 108-120, 2010.
doi:10.1109/TSP.2009.2029723

9. He, J., N. S. Swamy, and M. O. Ahmad, "Efficient application of MUSIC algorithm under the coexistence of far-field and near-field sources," IEEE Transactions on Signal Processing, Vol. 60, No. 4, 2066-2070, 2012.
doi:10.1109/TSP.2011.2180902

10. Jiang, J. J., F. J. Duan, J. Chen, et al. "Mixed near-field and far-field sources localization using the uniform linear sensor array," IEEE Sensors Joural, Vol. 13, No. 8, 3136-3143, 2013.
doi:10.1109/JSEN.2013.2257735

11. Chen, L., X. Z. Yan, and G. H. Liu, "An improved method for passive localization of coexistent far-field and near-field sources," International Congress on Image and Signal Processing, Vol. 3, 1417-1421, 2013.

12. Wen, F. X. and W. P. Tay, "Localization for mixed near-field and far-field sources using data supported optimization," International Conference on Information Fusion, 402-407, 2012.

13. Wang, B., J. J. Liu, and X. Y. Sun, "Mixed sources localization based on sparse signal reconstruction," IEEE Signal Processing Letters, Vol. 19, No. 8, 487-490, 2012.
doi:10.1109/LSP.2012.2204248

14. Liu, G. H. and X. Y. Sun, "Two-stage matrix differencing algorithm for mixed far-field and near- ¯eld sources classi¯cation and localization," IEEE Sensor Journal, Vol. 44, No. 6, 1-8, 2014.
doi:10.1109/JSEN.2014.2336240

15. Huang, Q. H. and T. Song, "DOA estimation of mixed near-field and far-field sources using spherical array," International Conference on Signal Processing, Vol. 1, 382-385, 2012.

16. Liang, J. and Q. Y. Yin, "Space-time DOA matrix method," Acta Electronica Sinica, Vol. 28, No. 6, 8-12, 2000.

17. Liu, F. L., J. K.Wang, R. Y. Du, and Y. Ge, "Space-time matrix method for 2-D direction-of-arrival estimation," Signal Processing, Vol. 87, No. 1, 101-106, 2007.
doi:10.1016/j.sigpro.2006.05.001