Vol. 54
Latest Volume
All Volumes
PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2014-11-04
Remote Detection and Recognition of Electrostatic Discharge from HVDC Transmission Lines
By
Progress In Electromagnetics Research C, Vol. 54, 143-154, 2014
Abstract
To remotely detect corona discharge from High-Voltage Direct Current (HVDC) transmission lines, a detecting system combining detecting platform and data progressing system is designed. Detecting platform is developed resorting to the principle of differential noise reduction, which can fulfill narrow-band detection breaking away interference from broadcasting and easily catch the electrostatic discharge signal. To get rid of interference from spark discharge, a data progressing system containing feature extractions, clustering and recognition technologies is developed. Clustering is realized by extracting five discharge features, including peak factor, form factor, skewness, kurtosis and mean square error. The unsupervised clustering Fuzzy C-Means (FCM) method is used to achieve fast separation for electrostatic discharges and provide training set for pattern recognition. Pattern recognition resorts to Support Vector Machine (SVM) method. For comparison, Back Propagation (BP) and Learning Vector Quantization (LVQ) approaches are taken to test the recognition ability. The results show that SVM recognizer with a recognition rate of 97.5% achieves higher performance than BP and LVQ methods. It can be concluded that the detecting system can be an interesting alternative for electrostatic discharge detection.
Citation
Yue Zhang, Shanghe Liu, and Xiaofeng Liu, "Remote Detection and Recognition of Electrostatic Discharge from HVDC Transmission Lines," Progress In Electromagnetics Research C, Vol. 54, 143-154, 2014.
doi:10.2528/PIERC14072901
References

1. Nakano, Y. and Y. Sunaga, "Availability of corona cage for predicting radio interference generated from HVDC transmission line," IEEE Trans. Power Del., Vol. 5, No. 3, 1436-1442, Jul. 1990.
doi:10.1109/61.57986

2. Maruvada, P. S., Corona Performance of High-voltage Transmission Lines, Research Studies Press Ltd, England, 2000.

3., CISPR TR 18-1 ED.2, "Radio interference characteristics of overhead power lines and high-voltage equipment-part 1,", 2010.

4., CISPR TR 18-1 ED.2, "Radio interference characteristics of overhead power lines and high-voltage equipment-part 2,", 2010.

5. Zhou, C., Y. Liu, and X. Rui, "Mechanism and characteristic of rain-induced vibration on highvoltage transmission line," Journal of Mechanical Science and Technology, Vol. 26, No. 8, 2505-2510, 2012.
doi:10.1007/s12206-012-0631-0

6. Bracken, T. D., R. S. Senior, and W. H. Bailey, "DC electric fields from corona-generated space charge near AC transmission lines," IEEE Trans. Power Del., Vol. 20, No. 2, 1692-1702, 2005.
doi:10.1109/TPWRD.2004.834309

7. Hatanaka, G. K., "Field measurement of VHF noise from an operating 500-kV power line," IEEE Trans. Power App. Syst., Vol. 100, No. 2, 863-872, 1981.
doi:10.1109/TPAS.1981.316945

8. Huertas, J. I., R. Barraza, and J. M. Echeverry, "Wireless data transmission from inside electromagnetic fields," Journal of Microwave Power and Electromagnetic Energy, Vol. 44, No. 2, 88-97, 2010.

9. Chartier, V. L., R. Sheridan, J. N. Diplacido, et al. "Electromagnetic interference measurements at 900 MHz on 230 kV and 500 kV transmission lines," IEEE Trans. Power Del., Vol. 2, No. 2, 140-149, 1986.
doi:10.1109/TPWRD.1986.4307944

10. Chao, F., X. Cui, X. Zhou, et al. "Impact factors in measurements of ion-current density produced by high-voltage DC wire’s corona," IEEE Trans. Power Del., Vol. 28, No. 3, 1414-1422, 2013.
doi:10.1109/TPWRD.2013.2252203

11. Radwan, R. M. and A. M. Mahdy, "Electric field mitigation under extra high voltage power lines," IEEE Trans. Dielectr. Electr. Insul., Vol. 20, No. 1, 54-62, 2013.
doi:10.1109/TDEI.2013.6451341

12. Lv, F., S. You, Y. Liu, Q. Wan, and Z. Zhao, "AC conductors’ corona-loss calculation and analysis in corona cage," IEEE Trans. Power Del., Vol. 27, No. 2, 877-885, 2012.
doi:10.1109/TPWRD.2012.2183681

13. Morris, R. M., A, . R. Morse, J. P. Griffin, O. C. Norris-Elye, C. V. Thio, and J. S. Goodman, "The corona and radio interference performance of the Nelson river HVDC transmission lines," IEEE Trans. Power App. Syst., Vol. 98, No. 6, 1924-1936, 1979.
doi:10.1109/TPAS.1979.319372

14. Maryvada, P. S., "Electric field and ion current environment of HVdc transmission lines: Comparison of calculations and measurements," IEEE Trans. Power Del., Vol. 27, No. 1, 401-410, 2012.
doi:10.1109/TPWRD.2011.2172003

15. Vahidi, B., M. J. Alborzi, and H. Aghaeinia, "Corona detection on surfaces of insulators using ultrasound sensors and fibre-optic transmission system," European Transactions on Electrical Power, Vol. 15, No. 5, 413-424, 2005.
doi:10.1002/etep.50

16. Fromm, U. and F. H. Kreuger, "Statistical behavior of partial discharge at DC voltage," Japanese J. Appl. Phys., Vol. 33, 6708-6715, 1994.
doi:10.1143/JJAP.33.6708

17. Fromm, U., "Interpretation of partial discharges at DC voltage," IEEE Trans. Dielectr. Electr. Insul., Vol. 2, No. 5, 761-769, Oct. 1995.
doi:10.1109/94.469972

18. Fromm, U., "Partial discharge and breakdown testing at high dc voltage,", Delft University of Technology (the Netherlands), Delft University Press, ISBN 90-407-1155-0, 1995.
doi:10.1109/94.469972

19. Morshuis, P., M. Jeroense, and J. Beyer, "Partial discharge part XXIV: The analysis of PD in HVDC equipment," IEEE Electr. Insul. Mag., Vol. 13, No. 2, 6-16, 1997.
doi:10.1109/57.583421

20. Gulski, E., H. P. Burger, G. H. Vaillancourt, and R. Brooks, "PD pattern analysis during induced test of large power transformers," IEEE Trans. Dielectr. Insul., Vol. 7, No. 1, 95-101, Feb. 2000.
doi:10.1109/94.839346

21. Morshuis, P. H. F. and J. J. Smit, "Partial discharges at voltage: Their Mechanism, detection and analysis," IEEE Trans. Dielectr. Insul., Vol. 12, No. 2, 763-808, 2005.
doi:10.1109/TDEI.2005.1430401

22. Wang, M. H., "Partial discharge pattern recognition of current transformers using an ENN," IEEE Trans. Power Del., Vol. 20, No. 3, 1984-1990, 2005.
doi:10.1109/TPWRD.2005.848441

23. Wang, M. H., "Extension neural network-type 2 and its applications," IEEE Trans. Neural Netw., Vol. 16, No. 6, 1352-1361, 2005.
doi:10.1109/TNN.2005.853334

24. Si, W., J. Li, P. Yuan, and Y. Li, "Digital detection, grouping and classification of partial discharge signals at DC voltage," IEEE Trans. Dielectr. Insul., Vol. 15, No. 6, 1663-1674, 2008.
doi:10.1109/TDEI.2008.4712671

25. Yamamoto, S. and O. Ozeki, "Properties of high-frequency conducted noise from automotive electrical accessories," IEEE Trans. Electromagn. Compat., Vol. 25, No. 1, 2-7, 1983.
doi:10.1109/TEMC.1983.304145

26. Xiao, J., D. Pommerenke, J. L. Drewniak, H. Shumiya, T. Yamada, and K. Araki, "Model of secondary ESD for a portable electronic product," IEEE Trans. Electromagn. Compat., Vol. 54, No. 3, 546-555, 2012.
doi:10.1109/TEMC.2011.2171040

27. Dempster, A. P., N. M. Laird, and D. B. Rubin, "Maximum likelihood from incomplete data via the EM algorithm," Journal of the Royal Statistical Society, Series B, Vol. 39, No. 1, 1-38, 1977.

28. Rohlfing, T., D. L. B. Russakoff, and C. R. Maurer, "Performance-based classifier combination in atlas-based image segmentation using expectation-maximization parameter estimation," IEEE Trans. Med. Imaging, Vol. 23, 983-994, 2004.
doi:10.1109/TMI.2004.830803

29. Kanungo, T., D. M. Mount, N. S. Netanyahu, C. D. Piatko, and Y. Wu, "An efficient k-means clustering algorithm: Analysis and implementation," IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 24, No. 7, 881-892, Jul. 2002.
doi:10.1109/TPAMI.2002.1017616

30. Zhang, S., R. Wang, and X. Zhang, "Identification of overlapping community structure in complex networks using fuzzy C-means clustering," Physica A: Statistical Mechanics and its Applications, Vol. 374, No. 1, 483-490, 2007.
doi:10.1016/j.physa.2006.07.023

31. Dunn, J. C., "A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters," J. Cybernet., Vol. 3, No. 3, 32-57, 1973.
doi:10.1080/01969727308546046

32. Bezdek, J. C., Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, New York, 1981.
doi:10.1007/978-1-4757-0450-1

33. Camastra, F. and A. Vinciarelli, "Cursive character recognition by learning vector quantization," Pattern Recognition Letters, Vol. 22, No. 6, 625-629, 2001.
doi:10.1016/S0167-8655(01)00008-3

34. Camastra, F. and A. Vinciarelli, "Combining neural gas and learning vector quantization for cursive character recognition," Neurocomputing, Vol. 51, 147-159, Apr. 2003.
doi:10.1016/S0925-2312(02)00613-6

35. Vapnik, V. N., Statistical Learning Theory, John Wiley & Sons, New York, 1998.

36. Sharkawy, R. M., R. S. Mangoubi, T. K. Abdel-Galil, M. M. Salama, and R. Bartnikas, "SVM classification of contaminating particles in liquid dielectrics using higher order statistics of electrical and acoustic PD measurements," IEEE Trans. Dielectr. Electr. Insul., Vol. 14, No. 3, 669-678, 2007.
doi:10.1109/TDEI.2007.369530