Vol. 40
Latest Volume
All Volumes
PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2014-12-14
Modelling the Impact of Operating Frequencies on Path Loss and Shadowing Along Multi-Floor Stairwell for 0.7 GHz -2.5 GHz Range
By
Progress In Electromagnetics Research M, Vol. 40, 69-78, 2014
Abstract
Given that building occupants and more importantly public safety personnel regularly use stairwell to move about different floors in a multi-floor building, wireless network coverage for the setting may come as necessary in order to ensure seamless telecommunication connectivity. Nevertheless, wireless network planning pertaining to multi-floor stairwell scenario requires unique radio characterization since the scenario is different from other indoor environments. This paper presents a frequency dependent path loss and shadowing model for the multi-floor stairwell environment that was developed and tested at six dog-leg style stairwells. The empirical model covers frequency spectrum from 0.7 GHz up to 2.5 GHz which envelop numerous public safety and long term evolution operating bands. The model demonstrates good precision and is shown to outperform standard path loss model when comparison was made since it includes site-specific parameters describing radio characteristics natural to stairwell setting. The straightforward mathematical expression of the model can easily be applied when setting up or studying wireless network for the stipulated frequency range with respect to the multi-floor stairwell.
Citation
Omar Abdul Aziz, and Tharek Bin Abdul Rahman, "Modelling the Impact of Operating Frequencies on Path Loss and Shadowing Along Multi-Floor Stairwell for 0.7 GHz -2.5 GHz Range," Progress In Electromagnetics Research M, Vol. 40, 69-78, 2014.
doi:10.2528/PIERM14111105
References

1. Wang, Y., X. L.Wang, Y. Qin, Y. Liu, W. J. Lu, and H. B. Zhu, "An empirical path loss model in the indoor stairwell at 2.6 GHz," 2014 IEEE International Wireless Symposium (IWS), 1-4, 2014.

2. Yu, Y., Y. Liu, W. J. Lu, and H. B. Zhu, "Path loss model with antenna height dependency under indoor stair environment," International Journal of Antennas and Propagation, Vol. 2014, 482615, 2014.

3. Lim, S., Z. Yun, and M. Iskander, "Propagation measurement and modeling for indoor stairwells at 2.4 and 5.8GHz," IEEE Trans. Antennas and Propag., Vol. 62, No. 9, 4754-4761, 2014.
doi:10.1109/TAP.2014.2336258

4. Aziz, O. A. and T. A. Rahman, "Investigation of path loss prediction in different multi-floor stairwells at 900MHz and 1800 MHz," Progress In Electromagnetics Research M, Vol. 39, 27-39, 2014.
doi:10.2528/PIERM14061904

5. Matolak, D. W., Q. Zhang, and Q. Wu, "Path loss in an urban peer-to-peer channel for six public-safety frequency bands," IEEE Wireless Commun. Lett., Vol. 2, No. 3, 263-266, 2013.
doi:10.1109/WCL.2013.020513.120919

6. Souryal, M., J. Geissbuehler, L. Miller, and N. Moayeri, "Real-time deployment of multihop relays for range extension," Proceedings of the 5th International Conference on Mobile Systems, Applications and Services, 85-98, 2007.

7. Lim, S. Y., Z. Yun, J. M. Baker, N. Celik, H. Youn, and M. F. Iskander, "Propagation modeling and measurement for a multifloor stairwell," IEEE Antennas and Wireless Propag. Lett., Vol. 8, 583-586, 2009.

8. Yang, C. F. and B. C.Wu, "A ray-tracing/PMM hybrid approach for determining wave propagation through periodic structures," IEEE Trans. Veh. Technol., Vol. 50, No. 3, 791-795, 2001.
doi:10.1109/25.933313

9. Teh, C. H. and H. T. Chuah, "Propagation measurement in a multi-floor stairwell for model validation," 28th Int. Union of Radio Sci. Gen. Assembly, India, Oct. 2005.

10. Valcarce, A. and J. Zhang, "Empirical indoor-to-outdoor propagation model for residential areas at 0.9 to 3.5 GHz," IEEE Antennas and Wireless Propag. Lett., Vol. 9, 682-685, 2010.
doi:10.1109/LAWP.2010.2058085

11. Yan, J. J., Y. P. Hong, S. Shinjo, K. Mukai, and P. M. Asbeck, "Broadband high PAE GaN push-pull power amplifier for 500MHz to 2.5GHz operation," 2013 IEEE MTT-S International Microwave Symposium Digest (IMS), 1-3, 2013.
doi:10.1109/MWSYM.2013.6697741

12. Pedersen, K. I., P. H. Michaelsen, C. Rosa, and S. Barbera, "Mobility enhancements for LTE-advanced multilayer networks with inter-site carrier aggregation," IEE Communications Magazine,, Vol. 51, No. 5, 64-71, 2013.
doi:10.1109/MCOM.2013.6515048

13. Refaei, M. T., M. R. Souryal, and N. Moayeri, "Interference avoidance in rapidly deployed wireless ad hoc incident area network," IEEE INFOCOM Workshops 2008, 1-6, 2008.
doi:10.1109/INFOCOM.2008.4544644

14. Emmitt, S. and C. A. Gorse, Barry’s Introduction to Construction of Buildings, 2nd Edition, Wile-Blackwell, 2010.

15. Hartwell, C. and N. Pevsner, Lancashire: North: The Buildings of England, Yale University Press, 2009.

16. Building Department, The Government of Hong Kong Special Administrative Unit, "Code of Practice for Fire Safety in Buildings,", 2011.

17. Hoffmann, A. and R. Muehlnikel, "Experimental and numerical investigation of fire development in a real fire in a five-storey apartment building," Fire Mater., Vol. 35, 453-462, 2010.

18. Al-Hourani, A. and S. Kandeepan, "Temporary cognitive femtocell network for public safety LTE," 2013 IEEE 18th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), 190-195, 2013.
doi:10.1109/CAMAD.2013.6708115

19. Doumi, T., M. F. Dolan, S. Tatesh, A. Casati, G. Tsirtsis, K. Anchan, and D. Flore, "LTE for public safety networks," IEEE Communications Magazine, Vol. 51, No. 2, 106-112, 2013.
doi:10.1109/MCOM.2013.6461193

20. Kyosti, P., et al. "WINNER II channel models,", 43-45, WINNER II Public Deliverable, 2007.