Vol. 41
Latest Volume
All Volumes
PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2015-02-27
Scattering from a Target Above Rough Sea Surface with Breaking Water Wave by an Iterative Analytic-Numerical Method
By
Progress In Electromagnetics Research M, Vol. 41, 115-123, 2015
Abstract
Two-dimensional (2D) electromagnetic scattering from a target above the sea with breaking water wave is studied by a multiregional iterative analytical-numerical method that combines the boundary integral method (BIM) and the Kirchhoff approximation (KA). Based on the ``Pierson-Moskowitz'' (PM) sea surface and the LONGTANK breaking wave, a theoretical model of a target above the rough sea surface with breaking wave is built firstly in this paper. Unlike traditional sea surface, the multipath scattering between the crest of the breaking wave and the target cannot be accurately predicted based on KA alone. To improve the algorithm precision, a multiregional hybrid analytical-numerical method is proposed. In our multiregional model, the whole sea is divided into two subregions: the breaking wave and the PM sea surface. The scattering from the breaking wave and the object is well approximated by BIM, while the PM sea surfaces can be estimated very well by KA based on Fresnel theories. Taking the interaction between KA region and BIM region into account, an iterative system is developed which gives a quick convergence. The hybrid technique presented here is highly efficient in terms of computing memory, time consumed, and versatility.
Citation
Runwen Xu, Li-Xin Guo, Qiang Wang, and Wei Liu, "Scattering from a Target Above Rough Sea Surface with Breaking Water Wave by an Iterative Analytic-Numerical Method," Progress In Electromagnetics Research M, Vol. 41, 115-123, 2015.
doi:10.2528/PIERM15011501
References

1. Holliday, D., L. L. De Raad, Jr., and G. J. St-Cyr, "Sea-spike backscatter from a steepening wave," IEEE Trans. Antennas Propagat., Vol. 46, 108-113, 1998.
doi:10.1109/8.655457

2. West, J. C., "Low-grazing-angle (LGA) sea-spike backscattering from plunging breaker crests," IEEE Trans. Geosci. Remote Sens., Vol. 40, 523-526, 2002.
doi:10.1109/36.992830

3. Zhao, Z. and J. C.West, "Low-grazing-angle microwave scattering from a three-dimensional spilling breaker crest: A numerical investigation," IEEE Trans. Geosci. Remote Sens., Vol. 43, 286-294, Feb. 2005.
doi:10.1109/TGRS.2004.840644

4. Li, Y. and J. C. West, "Low-grazing-angle scattering from 3-D breaking water wave crests," IEEE Trans. Geosci. Remote Sens., Vol. 44, 2093-2101, 2006.
doi:10.1109/TGRS.2006.872129

5. Qi, C., Z. Zhao, W. Yang, Z.-P. Nie, and G. Chen, "Electromagnetic scattering and Doppler analysis of three-dimensional breaking wave crests at low-grazing angles," Progress In Electromagnetics Research, Vol. 119, 239-252, 2011.
doi:10.2528/PIER11062401

6. Yang, W., Z. Zhao, C. Qi, and Z. Nie, "Electromagnetic modeling of breaking waves at low grazing angles with adaptive higher order hierarchical legendre basis functions," IEEE Trans. Geosci. Remote Sens., Vol. 49, 346-352, 2011.
doi:10.1109/TGRS.2010.2052817

7. Luo, W., M. Zhang, C. Wang, and H.-C. Yin, "Investigation of low-grazing-angle microwave backscattering from three-dimensional breaking sea waves," Progress In Electromagnetics Research, Vol. 119, 279-298, 2011.
doi:10.2528/PIER11062607

8. West, J. C. and Z. Q. Zhao, "Electromagnetic modeling of multipath scattering from breaking water waves with rough faces," IEEE Trans. Geosci. Remote Sens., Vol. 40, 583-592, 2002.
doi:10.1109/TGRS.2002.1000318

9. Ye, H. and Y. Q. Jin, "Fast iterative approach to difference scattering from the target above a rough surface," IEEE Trans. Geosci. Remote Sens., Vol. 40, 108-115, 2006.

10. Kubicke, G., C. Bourlier, and J. Saillard, "Scattering from canonical objects above a sea-like one-dimensional rough surface from a rigorous fast method," Waves in Random and Complex Media, Vol. 20, 156-178, Jan. 2010.
doi:10.1080/17455030903476712

11. Ye, H. and Y.-Q. Jin, "A hybrid analytic-numerical algorithm of scattering from an object above a rough surface," IEEE Trans. Geosci. Remote Sens., Vol. 45, 1174-1179, 2007.
doi:10.1109/TGRS.2007.892609

12. Wang, P., Y. Yao, and M. P. Tulin, "An efficient numerical tank for nonlinear water waves, based on the multi-subdomain approach with BEM," Int. J. Numer. Methods Fluids, Vol. 20, 1315-1336, 1995.
doi:10.1002/fld.1650201203

13. Tsang, L., J. A. Kong, K. H. Ding, and C. O. Ao, Scattering of Electromagnetic Waves: Numerical Simulations, Wiley, New York, 2001.
doi:10.1002/0471224308

14. Thorsos, E. I., "The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum," J. Acous. Soc. Am., Vol. 83, 78-92, 1988.
doi:10.1121/1.396188

15. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, New York, 1989.

16. Debye, P., Polar Molecules, Chemical Catalog, New York, 1929.