1. Politano, A. and G. Chiarello, "The influence of electron confinement, quantum size effects, and film morphology on the dispersion and the damping of plasmonic modes in Ag and Au thin films," Prog. Surf. Sci., Vol. 90, No. 2, 144-193, May 2015.
doi:10.1016/j.progsurf.2014.12.002 Google Scholar
2. Politano, A. and G. Chiarello, "Unravelling suitable graphene-metal contacts for graphene-based plasmonic devices," Nanoscale, Vol. 5, No. 17, 8215-8220, Sep. 2013.
doi:10.1039/c3nr02027d Google Scholar
3. Politano, A. and G. Chiarello, "Quenching of plasmons modes in air-exposed graphene-Ru contacts for plasmonic devices," Appl. Phys. Lett., Vol. 102, No. 20, 201608, Apr. 2013.
doi:10.1063/1.4804189 Google Scholar
4. Politano, A., "Interplay of structural and temperature effects on plasmonic excitations at noble-metal interfaces," Philos. Mag., Vol. 92, No. 6, 768-778, Feb. 2012.
doi:10.1080/14786435.2011.634846 Google Scholar
5. Politano, A., "Plasmonic modes confined in nanoscale thin silver films deposited onto metallic substrates," J. Nanosci. Nanotechnol., Vol. 10, No. 2, 1313-1321, Feb. 2010.
doi:10.1166/jnn.2010.1834 Google Scholar
6. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, No. 6950, 824-830, 2003.
doi:10.1038/nature01937 Google Scholar
7. Wu, M., Z. H. Han, and V. Van, "Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale," Opt. Express, Vol. 18, No. 11, 11728-11736, 2010.
doi:10.1364/OE.18.011728 Google Scholar
8. Dai, D. X. and S. L. He, "Low-loss hybrid plasmonic waveguide with double low-index nano-slots," Opt. Express, Vol. 18, No. 17, 17958-17966, 2010.
doi:10.1364/OE.18.017958 Google Scholar
9. Oulton, R. F., V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, "A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation," Nature Photonics, Vol. 2, No. 8, 496-500, 2008.
doi:10.1038/nphoton.2008.131 Google Scholar
10. Chu, H. S., E. P. Li, P. Bai, and R. Hegde, "Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components," Appl. Phys. Lett., Vol. 96, No. 22, 221103, 2010.
doi:10.1063/1.3437088 Google Scholar
11. Bian, Y. S., Z. Zheng, Y. Liu, J. S. Zhu, and T. Zhou, "Coplanar plasmonic nanolasers based on edge-coupled hybrid plasmonic waveguides," IEEE Photon. Technol. Lett., Vol. 23, No. 13, 884-886, 2011.
doi:10.1109/LPT.2011.2141981 Google Scholar
12. Holmgaard, T. and S. I. Bozhevolnyi, "Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides," Phy. Rev. B, Vol. 75, No. 24, 245405, 2007.
doi:10.1103/PhysRevB.75.245405 Google Scholar
13. Xiao, J., J. S. Liu, Z. Zheng, Y. S. Bian, and G. J. Wang, "Design and analysis of a nanostructure grating based on a hybrid plasmonic slot waveguide," J. Opt., Vol. 13, No. 10, 105001, 2011.
doi:10.1088/2040-8978/13/10/105001 Google Scholar
14. Lou, F., Z. C. Wang, D. X. Dai, L. Thylen, and L. Wosinski, "Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides," Appl. Phys. Lett., Vol. 100, No. 24, 241105, 2012.
doi:10.1063/1.4729018 Google Scholar
15. Bian, Y. S. and Q. H. Gong, "Deep-subwavelength light confinement and transport in hybrid dielectric-loaded metal wedges," Laser Photonics Rev., Vol. 8, No. 4, 549-561, 2014.
doi:10.1002/lpor.201300207 Google Scholar
16. Zhang, X. Y., A. Hu, J. Z. Wen, T. Zhang, X. J. Xue, Y. Zhou, and W. W. Duley, "Numerical analysis of deep sub-wavelength integrated plasmonic devices based on semiconductor-insulator-metal strip waveguides," Opt. Express, Vol. 18, No. 18, 18945-18959, 2010.
doi:10.1364/OE.18.018945 Google Scholar
17. Su, Y. L., Z. Zheng, Y. S. Bian, Y. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, "Low-loss silicon-based hybrid plasmonic waveguide with an air nanotrench for sub-wavelength mode confinement," Micro & Nano Letters, Vol. 6, No. 8, 643-645, 2011.
doi:10.1049/mnl.2011.0298 Google Scholar
18. Chen, L., X. Li, G. P. Wang, W. Li, S. H. Chen, L. Xiao, and D. S. Gao, "A silicon-based 3-D hybrid long-range plasmonic waveguide for nanophotonic integration," J. Lightwave Technol., Vol. 30, 163-168, 2012.
doi:10.1109/JLT.2011.2179008 Google Scholar
19. Krishnan, A., C. J. Regan, L. G. de Peralta, and A. A. Bernussi, "Resonant coupling in dielectric loaded plasmonic waveguides," Appl. Phys. Lett., Vol. 97, No. 23, 231110, 2010.
doi:10.1063/1.3525160 Google Scholar
20. Dionne, J. A., K. Diest, L. A. Sweatlock, and H. A. Atwater, "Plasmostor: A metal-oxide-Si field effect plasmonic modulator," Nano Letters, Vol. 9, No. 2, 897-902, 2009.
doi:10.1021/nl803868k Google Scholar
21. Song, Y., J.Wang, M. Yan, and M. Qiu, "Efficient coupling between dielectric and hybrid plasmonic waveguides by multimode interference power splitter," J. Opt., Vol. 13, No. 7, 075502, 2011.
doi:10.1088/2040-8978/13/7/075502 Google Scholar
22. Chu, H. S., P. Bai, E. P. Li, and W. R. J. Hoefer, "Hybrid dielectric-loaded plasmonic waveguide-based power splitter and ring resonator: Compact size and high optical performance for nanophotonic circuits," Plasmonics, Vol. 6, No. 3, 591-597, 2011.
doi:10.1007/s11468-011-9239-y Google Scholar
23. Krasavin, A. V. and A. V. Zayats, "Silicon-based plasmonic waveguides," Opt. Express, Vol. 18, No. 11, 11791-11799, 2010.
doi:10.1364/OE.18.011791 Google Scholar
24. Morita, M., T. Ohmi, E. Hasegawa, M. Kawakami, and M. Ohwada, "Growth of native oxide on a silicon surface," J. Appl. Phys., Vol. 68, No. 3, 1272-1281, 1990.
doi:10.1063/1.347181 Google Scholar
25. Kubota, H. and A. Kawai, "Native oxide growth on Si(100) surface in liquid environment," J. Photopolym. Sci. Tec., Vol. 20, No. 6, 823-824, 2007.
doi:10.2494/photopolymer.20.823 Google Scholar
26. Johnson, P. B. and R. W. Christy, "Optical constants of noble metals," Phy. Rev. B, Vol. 6, 4370-4379, 1972.
doi:10.1103/PhysRevB.6.4370 Google Scholar
27. Dai, D. X., X. W. Guan, and S. L. He, "Hybrid nanoplasmonic waveguides and nanophotonic integrated devices on silicon," Proc. SPIE, Vol. 8628, 862808, 2013.
doi:10.1117/12.2007917 Google Scholar
28. Xiao, Y. F., B. B. Li, X. Y. Hu, Y. Li, and Q. H. Gong, "High quality factor, small mode volume, ring-type plasmonic microresonator on a silver chip," J. Phys. B, At. Mol. Opt. Phys., Vol. 43, No. 3, 035402, 2010.
doi:10.1088/0953-4075/43/3/035402 Google Scholar
29. Zhu, S. Y., G. Q. Lo, and D. L. Kwong, "Experimental demonstration of vertical Cu-SiO2-Si hybrid plasmonic waveguide components on an SOI platform," IEEE Photon. Technol. Lett., Vol. 24, No. 14, 1224-1226, 2012.
doi:10.1109/LPT.2012.2199979 Google Scholar
30. Ketzaki, D. A., O. Tsilipakos, T. V. Yioultsis, and E. E. Kriezis, "Electromagnetically induced transparency with hybrid silicon-plasmonic traveling-wave resonators," J. Appl. Lett., Vol. 114, No. 11, 113107, 2013. Google Scholar
31. Lou, L., L. Thylen, and L. Wosinski, "Hybrid plasmonic microdisk resonators for optical interconnect applications," Proc. SPIE, Vol. 8781, 87810X, 2013.
doi:10.1117/12.2017108 Google Scholar
32. Song, Y., J. Wang, M. Yan, and M. Qiu, "Subwavelength hybrid plasmonic nanodisk with high Q factor and Purcell factor," J. Opt., Vol. 13, No. 7, 075001, 2011.
doi:10.1088/2040-8978/13/7/075001 Google Scholar
33. Pozar, D. M., Microwave Engineering, Wiley, 1998.
34. Hsieh, C. H., C. M. Kuo, Y. T. Chu, and K. C. Leou, "Design of an ultralow loss silicon plasmonic waveguide and high performance devices," IEEE Photon. Technol. Lett., Vol. 27, No. 10, 1096, 2015.
doi:10.1109/LPT.2015.2407875 Google Scholar
35. Lipka, T., A. Harke, O. Horn, J. Amthor, and J. Muller, "Amorphous silicon as high index photonic material," Photonic Materials, Devices, and Applications III, Vol. 8429, SPIE --- International Society Optical Engineering, Bellingham, 2009. Google Scholar
36. Zhu, S. Y., G. Q. Lo, and D. L. Kwong, "Low-loss amorphous silicon wire waveguide for integrated photonics: Effect of fabrication process and the thermal stability," Opt. Express, Vol. 18, No. 24, 25283-25291, 2010.
doi:10.1364/OE.18.025283 Google Scholar