State Key Laboratory of Information Photonics and Optical Communications
Beijing University of Posts and Telecommunications
China
HomepageState Key Laboratory of Information Photonics and Optical Communications
Beijing University of Posts and Telecommunications
China
HomepageState Key Laboratory of Information Photonics and Optical Communications
Beijing University of Posts and Telecommunications
China
HomepageState Key Laboratory of Information Photonics and Optical Communications
Beijing University of Posts and Telecommunications
China
HomepageState Key Laboratory of Information Photonics and Optical Communications
Beijing University of Posts and Telecommunications
China
Homepage1. Kaminski, C. F., R. S. Watt, A. D. Elder, et al. "Supercontinuum radiation for applications in chemical sensing and microscopy," Applied Physics B, Vol. 92, No. 3, 367-378, 2008.
doi:10.1007/s00340-008-3132-1 Google Scholar
2. Nakasyotani, T., H. Toda, T. Kuri, et al. "Wavelength-division-multiplexed millimeter-waveband radio-on-fiber system using a supercontinuum light source," Journal of Lightwave Technology, Vol. 24, No. 1, 404, 2006.
doi:10.1109/JLT.2005.859854 Google Scholar
3. Morioka, T., K. Mori, S. Kawanishi, and M. Saruwatari, "Multi-WDM-channel GBit/s pulse generation from a single laser source utilizing LD-pumped supercontinuum in optical fibers," IEEE Photonics Technology Letters, Vol. 6, No. 3, 365-368, 1994.
doi:10.1109/68.275490 Google Scholar
4. Takara, H., T. Ohara, K. Mori, et al. "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electronics Letters, Vol. 36, No. 25, 2089-2090, 2000.
doi:10.1049/el:20001461 Google Scholar
5. Moon, S. and D. Y. Kim, "Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source," Optics Express, Vol. 14, No. 24, 11575-11584, 2006.
doi:10.1364/OE.14.011575 Google Scholar
6. Udem, T., R. Holzwarth, and T. W. Hänsch, "Optical frequency metrology," Nature, Vol. 416, No. 6877, 233-237, 2002.
doi:10.1038/416233a Google Scholar
7. Jones, D. J., S. A. Diddams, J. K. Ranka, et al. "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science, Vol. 288, No. 5466, 635-639, 2000.
doi:10.1126/science.288.5466.635 Google Scholar
8. Agrawal, G. P., Nonlinear Fiber Optics, 4th Ed., 2007.
9. Ranka, J. K., R. S. Windeler, and A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Optics Letters, Vol. 25, No. 1, 25-27, 2000.
doi:10.1364/OL.25.000025 Google Scholar
10. Omenetto, F. G., N. A. Wolchover, M. R. Wehner, et al. "Spectrally smooth supercontinuum from 350 nm to 3 μm in sub-centimeter lengths of soft-glass photonic crystal fibers," Optics Express, Vol. 14, No. 11, 4928-4934, 2006.
doi:10.1364/OE.14.004928 Google Scholar
11. Qin, G., X. Yan, C. Kito, et al. "Supercontinuum generation spanning over three octaves from UV to 3.85 μm in a fluoride fiber," Optics Letters, Vol. 34, No. 13, 2015-2017, 2009.
doi:10.1364/OL.34.002015 Google Scholar
12. Gu, X., M. Kimmel, A. Shreenath, et al. "Experimental studies of the coherence of microstructure-fiber supercontinuum," Optics Express, Vol. 11, No. 21, 2697-2703, 2003.
doi:10.1364/OE.11.002697 Google Scholar
13. Genty, G., S. Coen, and J. M. Dudley, "Fiber supercontinuum sources," JOSA B, Vol. 24, No. 8, 1771-1785, 2007.
doi:10.1364/JOSAB.24.001771 Google Scholar
14. Hooper, L. E., P. J. Mosley, A. C. Muir, et al. "Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion," Optics Express, Vol. 19, No. 6, 4902-4907, 2011.
doi:10.1364/OE.19.004902 Google Scholar
15. Li, P., L. Shi, and Q.-H. Mao, "Supercontinuum generated in all-normal dispersion photonic crystal fibers with picosecond pump pulses," Chinese Physics B, Vol. 22, No. 7, 074204, 2013.
doi:10.1088/1674-1056/22/7/074204 Google Scholar
16. Yan, P., R. Dong, G. Zhang, et al. "Numerical simulation on the coherent time-critical 2–5 μm supercontinuum generation in an As2S3 microstructured optical fiber with all-normal flat-top dispersion profile," Optics Communications, Vol. 293, 133-138, 2013.
doi:10.1016/j.optcom.2012.11.093 Google Scholar
17. Hartung, A., A. M. Heidt, and H. Bartelt, "Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation," Optics Express, Vol. 19, No. 8, 7742-7749, 2011.
doi:10.1364/OE.19.007742 Google Scholar
18. Poli, F., A. Cucinotta, S. Selleri, et al. "Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers," IEEE Photonics Technology Letters, Vol. 16, No. 4, 1065-1067, 2004.
doi:10.1109/LPT.2004.824624 Google Scholar
19. Saitoh, K. and M. Koshiba, "Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window," Optics Express, Vol. 12, No. 10, 2027-2032, 2004.
doi:10.1364/OPEX.12.002027 Google Scholar
20. Bozolan, A., C. J. de Matos, C. Cordeiro, et al. "Supercontinuum generation in a water-core photonic crystal fiber," Optics Express, Vol. 16, No. 13, 9671-9676, 2008.
doi:10.1364/OE.16.009671 Google Scholar
21. Zhang, H., S. Chang, J. Yuan, et al. "Supercontinuum generation in chloroform-filled photonic crystal fibers," Optik-International Journal for Light and Electron Optics, Vol. 121, No. 9, 783-787, 2010.
doi:10.1016/j.ijleo.2008.09.026 Google Scholar
22. Zhang, R., J. Teipel, and H. Giessen, "Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation," Optics Express, Vol. 14, No. 15, 6800-6812, 2006.
doi:10.1364/OE.14.006800 Google Scholar
23. Kedenburg, S., T. Gissibl, T. Steinle, et al. "Towards integration of a liquid-filled fiber capillary for supercontinuum generation in the 1.2–2.4 μm range," Optics Express, Vol. 23, No. 7, 8281-8289, 2015.
doi:10.1364/OE.23.008281 Google Scholar
24. Churin, D., T. N. Nguyen, K. Kieu, et al. "Mid-IR supercontinuum generation in an integrated liquid-core optical fiber filled with CS2," Optical Materials Express, Vol. 3, No. 9, 1358-1364, 2013.
doi:10.1364/OME.3.001358 Google Scholar
25. Yiou, S., P. Delaye, A. Rouvie, et al. "Stimulated Raman scattering in an ethanol core microstructured optical fiber," Optics Express, Vol. 13, No. 12, 4786-4791, 2005.
doi:10.1364/OPEX.13.004786 Google Scholar
26. Cox, F. M., A. Argyros, and M. C. J. Large, "Liquid-filled hollow core microstructured polymer optical fiber," Optics Express, Vol. 14, No. 9, 4135-4140, 2006.
doi:10.1364/OE.14.004135 Google Scholar
27. Hult, J., "A fourth-order Runge-Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers," Journal of Lightwave Technology, Vol. 25, No. 12, 3770-3775, 2007.
doi:10.1109/JLT.2007.909373 Google Scholar
28. Dudley, J. M., G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Reviews of Modern Physics, Vol. 78, No. 4, 1135, 2006.
doi:10.1103/RevModPhys.78.1135 Google Scholar
29. Klimczak, M., G. Soboń, K. Abramski, et al. "Spectral coherence in all-normal dispersion supercontinuum in presence of Raman scattering and direct seeding from sub-picosecond pump," Optics Express, Vol. 22, No. 26, 31635-31645, 2014.
doi:10.1364/OE.22.031635 Google Scholar
30. Zaitsu, S., Y. Kida, and T. Imasaka, "Stimulated Raman scattering in the boundary region between impulsive and nonimpulsive excitation," JOSA B, Vol. 22, No. 12, 2642-2650, 2005.
doi:10.1364/JOSAB.22.002642 Google Scholar