1. Ye, D., Y. Wu, and Y. Liu, "A tradeoff design of broadband power amplifier in Doherty configuration utilizing a novel coupled-line coupler," Progress In Electromagnetics Research C, Vol. 48, 11-19, 2014.
doi:10.2528/PIERC14011702 Google Scholar
2. Ma, C., W. Pan, and Y.-X. Tang, "Design of asymmetrical Doherty power amplifier with reduced memory effects and enhanced back-off efficiency," Progress In Electromagnetics Research C, Vol. 56, 195-203, 2015.
doi:10.2528/PIERC15013002 Google Scholar
3. Raychaudhuri, D. and N. B. Mandayam, "Frontiers of wireless and mobile communications," Proc. IEEE, Vol. 100, No. 4, 824-840, 2012.
doi:10.1109/JPROC.2011.2182095 Google Scholar
4. Raab, H., P. Asbeck, S. Cripps, P. B. Kenington, Z. B. Popovic, N. Pothecary, J. F. Sevic, and N. O. Sokal, "Power amplifiers and transmitters for RF and microwave," IEEE Trans. Microw. Theory Tech., Vol. 50, No. 3, 814-826, 2002.
doi:10.1109/22.989965 Google Scholar
5. Cripps, S., RF Power Amplifiers for Wireless Communications, Artech House, 2006.
6. Kenington, P. B., High Linearity RF Amplifier Design, Artech House, 2000.
7. Chipansky Freire, L. B., C. de Franca, and E. G. de Lima, "A modified real-valued feed-forward neural network low-pass equivalent behavioral model for RF power amplifiers," Progress In Electromagnetics Research C, Vol. 57, 43-52, 2015.
doi:10.2528/PIERC15022802 Google Scholar
8. Mathews, V. and G. Sicuranza, Polynomial Signal Processing, Wiley, 2000.
9. Sun, G., C. Yu, Y. Liu, S. Li, and J. Li, "An accurate complexity-reduced simplified Volterra series for RF power amplifiers," Progress In Electromagnetics Research C, Vol. 47, 157-166, 2014.
doi:10.2528/PIERC13121201 Google Scholar
10. Sun, G., C. Yu, Y. Liu, S. Li, and J. Li, "A modified generalized memory polynomial model for RF power amplifiers," Progress In Electromagnetics Research Letters, Vol. 47, 97-102, 2014.
doi:10.2528/PIERL14060307 Google Scholar
11. Kim, J. and K. Konstantinou, "Digital predistortion of wideband signals based on power amplifier model with memory," Electron. Lett., Vol. 37, No. 23, 1417-31418, 2001.
doi:10.1049/el:20010940 Google Scholar
12. Zhu, A., J. C. Pedro, and T. J. Brazil, "Dynamic deviation reduction-based Volterra behavioral modeling of RF power amplifiers," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 12, 4323-4332, 2006.
doi:10.1109/TMTT.2006.883243 Google Scholar
13. Morgan, D., Z. Ma, J. Kim, M. Zierdt, and J. Pastalan, "A generalized memory polynomial model for digital predistortion of RF power amplifiers," IEEE Trans. Signal Process., Vol. 54, No. 10, 3852-3860, 2006.
doi:10.1109/TSP.2006.879264 Google Scholar
14. Lima, E. G., T. R. Cunha, and J. C. Pedro, "A physically meaningful neural network behavioral model for wireless transmitters exhibiting PM-AM/PM-PM distortions," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 12, 3512-3521, 2011.
doi:10.1109/TMTT.2011.2171709 Google Scholar
15. Isaksson, M., D. Wisell, and D. Ronnow, "A comparative analysis of behavioral models for RF power amplifiers," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 1, 348-359, 2006.
doi:10.1109/TMTT.2005.860500 Google Scholar