Vol. 47
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-03-20
Low-Power Far Field Nanonewton Optical Force Trapping Based on Far-Field Nanofocusing Plasmonic Lens
By
Progress In Electromagnetics Research M, Vol. 47, 37-44, 2016
Abstract
In this article, we study the far-field trapping behavior of dielectric nanospheres with diameter of 200 nm by utilizing a plasmon enhanced far-field nanofocusing lens. Based on our high effectnanofocusing circular plasmonic lens, such a far-field plasmonictrap is constituted by illuminating with a laser to form a sharper focus (subwavelength) due to a constructive interference of cylindrical surface plasmon wave. The nanoparticles can be steadily trapped in the far-field focal region (4.4λ) with an optical force to nanonewton (-4.76 nN) order, and the required optical power is less than 0.5 W. Compared with other surface plasmon tweezers, the proposed far-filed plasmonic tweezers can not only avoid physical contact with the trapped particles to prevent contamination and reduce thermal damage effects due to metal absorption, but also enable the easy trapping and manipulation of nanosizedielectric particles owing to nanonewton scale forces.
Citation
Pengfei Cao Lin Cheng , "Low-Power Far Field Nanonewton Optical Force Trapping Based on Far-Field Nanofocusing Plasmonic Lens," Progress In Electromagnetics Research M, Vol. 47, 37-44, 2016.
doi:10.2528/PIERM16012103
http://www.jpier.org/PIERM/pier.php?paper=16012103
References

1. Ashkin, A., "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett., Vol. 24, 156-159, 1970.
doi:10.1103/PhysRevLett.24.156

2. Ashkin, A., J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett., Vol. 11, 288-290, 1986.
doi:10.1364/OL.11.000288

3. Grier, D. G., "A revolution in optical manipulation," Nature, Vol. 424, No. 6950, 810-816, 2003.
doi:10.1038/nature01935

4. Ashkin, A., "Optical trapping and manipulation of neutral particles using lasers," Proc. Natl. Acad. Sci. U.S.A., Vol. 94, No. 10, 4853-4860, 1997.
doi:10.1073/pnas.94.10.4853

5. Ashkin, A., K. Sch¨utze, J. M. Dziedzic, U. Euteneuer, and M. Schliwa, "Force generation of organelle transport measured in vivo by an infrared laser trap," Nature, Vol. 348, 346-348, 1990.
doi:10.1038/348346a0

6. Ukita, H., T. Saitoh, and N. Sakahara, "Resolving discrepancy between theoretical and experimental optical trapping forces using effects of beam waist and trapping position displacement due to gravity," Opt. Rev., Vol. 13, No. 6, 436-442, 2006.
doi:10.1007/s10043-006-0436-4

7. Miao, X., H. Liao, and L. Y. Lin, "Opto-plasmonic tweezers for rotation and manipulation of micro/nano objects," Optical MEMS and Their Applications Conference, Proc. of IEEE/LEOS International Conference on IEEE, 15-16, 2005.

8. Serey, X., S. Mandal, and D. Erickson, "Comparison of silicon photonic crystal resonator designs for optical trapping of nanomaterials," Nanotechnology, Vol. 21, No. 30, 305202, 2010.
doi:10.1088/0957-4484/21/30/305202

9. Wang, K., E. Schonbrun, P. Steinvurzel, and K. B. Crozier, "Nanoparticle manipulation using a plasmonic nano-tweezer with an integrated heat sink," Conference on Lasers and Electro-Optics (CLEO), OSA, QWG2, 2011.

10. Nieto-Vesperinas, M., P. Chaumet, and A. Rahmani, "Near field photonic forces," Phil. Trans. R. Soc. A, Vol. 362, 719-737, 2004.

11. Erickson, D., X. Serey, Y. F. Chen, and S. Mandal, "Nanomanipulation using near field photonics," Lab. Chip, Vol. 11, No. 6, 995-1009, 2011.
doi:10.1039/c0lc00482k

12. Quidant, R., D. Petrov, and G. Badenes, "Radiation forces on a rayleigh dielectric sphere in a patterned optical near field," Opt. Lett., Vol. 30, 1009-1011, 2005.
doi:10.1364/OL.30.001009

13. Zhang, Q., J. J. Xiao, X. M. Zhang, and Y. Yao, "Optical binding force of gold nanorod dimers coupled to a metallic slab," Opt. Commun., Vol. 301-302, 121-126, 2013.
doi:10.1016/j.optcom.2013.04.005

14. Lezec, H. J., A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science, Vol. 297, No. 5582, 820-822, 2002.
doi:10.1126/science.1071895

15. Valdivia-Valero, F. J. and M. Nieto-Vesperinas, "Whispering gallery mode propagation in photonic crystals in front of subwavelength slit arrays: Interplay with extraordinary transmission," Opt. Commun., Vol. 284, No. 7, 1726-1733, 2011.
doi:10.1016/j.optcom.2010.11.085

16. Xu, H. and M. Kall, "Surface-plasmon-enhanced optical forces in silver nanoaggregates," Phys. Rev. Lett., Vol. 89, No. 24, 246802-246802, 2002.
doi:10.1103/PhysRevLett.89.246802

17. Arias-Gonzalez, J. R. and M. Nieto-Vesperinas, "Optical forces on small particles: Attractive and repulsive nature and plasmon-resonance conditions," JOSA A, Vol. 20, No. 7, 1201-1209, 2003.
doi:10.1364/JOSAA.20.001201

18. Zelenina, A. S., R. Quidant, and M. Nieto-Vesperinas, "Enhanced optical forces between coupled resonant metal nanoparticles," Opt. Lett., Vol. 32, No. 9, 1156-1158, 2007.
doi:10.1364/OL.32.001156

19. Zelenina, A. S., R. Quidant, G. Badenes, and M. Nieto-Vesperinas, "Tunable optical sorting and manipulation of nanoparticles via plasmon excitation," Opt. Lett., Vol. 31, No. 13, 2054-2056, 2006.
doi:10.1364/OL.31.002054

20. Juan, M. L., M. Righini, and R. Quidant, "Plasmon nano-optical tweezers," Nat. Photonics, Vol. 5, No. 6, 349-356, 2011.
doi:10.1038/nphoton.2011.56

21. Zhang, W., L. Huang, C. Santschi, and O. J. Martin, "Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas," Nano Lett., Vol. 10, No. 3, 1006-1011, 2010.
doi:10.1021/nl904168f

22. Grigorenko, A. N., N. W. Roberts, M. R. Dickinson, and Y. Zhang, "Nanometric optical tweezers based on nanostructured substrates," Nat. Photonics, Vol. 2, No. 6, 365-370, 2008.
doi:10.1038/nphoton.2008.78

23. Righini, M., A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nat. Phys., Vol. 3, No. 7, 477-480, 2007.
doi:10.1038/nphys624

24. Roxworthy, B. J., K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, K. C. Toussaint, and Jr., "Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting," Nano Lett., Vol. 12, No. 2, 796-801, 2012.
doi:10.1021/nl203811q

25. Kang, J. H., K. Kim, H. S. Ee, Y. H. Lee, T. Y. Yoon, M. K. Seo, and H. G. Park, "Low-power nano-optical vortex trapping via plasmonic diabolo nanoantennas," Nat. Commun., Vol. 2, 582, 2011.
doi:10.1038/ncomms1592

26. Righini, M., P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, "Nano-optical trapping of rayleigh particles and escherichia coli bacteria with resonant optical antennas," Nano Lett., Vol. 9, No. 10, 3387-3391, 2009.
doi:10.1021/nl803677x

27. Wang, K., E. Schonbrun, P. Steinvurzel, and K. B. Crozier, "Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink," Nat. Commun., Vol. 2, 469, 2011.
doi:10.1038/ncomms1480

28. Saleh, A. A. and J. A. Dionne, "Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures," Nano Lett., Vol. 12, No. 11, 5581-5586, 2012.
doi:10.1021/nl302627c

29. Garcés-Chávez, V., R. Quidant, P. J. Reece, G. Badenes, L. Torner, and K. Dholakia, "Extended organization of colloidal microparticles by surface plasmon polariton excitation," Phys. Rev. B, Vol. 73, No. 8, 085417, 2006.
doi:10.1103/PhysRevB.73.085417

30. Liu, Y., F. Stief, and M. Yu, "Subwavelength optical trapping with a fiber-based surface plasmonic lens," Opt. Lett., Vol. 38, No. 5, 721-723, 2013.
doi:10.1364/OL.38.000721

31. Fazal, F. M. and S. M. Block, "Optical tweezers study life under tension," Nat. Photonics, Vol. 5, 318-321, 2011.
doi:10.1038/nphoton.2011.100

32. Dong, J., C. E. Castro, M. C. Boyce, M. J. Lang, and S. Lindquist, "Optical trapping with high forces reveals unexpected behaviors of prion fibrils," Nature Struct. Mol. Biol., Vol. 17, 1422-1430, 2010.
doi:10.1038/nsmb.1954

33. Cheng, L., P. F. Cao, Y. Li, W. J. Kong, X. P. Zhao, and X. Zhang, "High efficient far-field nanofocusingwith tunable focus under radial polarization illumination," Plasmonics, Vol. 7, No. 1, 175-184, 2012.
doi:10.1007/s11468-011-9291-7

34. Cao, P., L. Cheng, X. Zhang, W.-P. Lu, W.-J. Kong, and X.-W. Liang, "Far-field tunable nano-focusing based on metallic slits surrounded with nonlinear-variant widths and linear-variant depths of circular dielectric grating," Progress In Electromagnetics Research, Vol. 138, 647-660, 2013.
doi:10.2528/PIER13011904

35. Evans, K., Nanocrystal-based optoelectronic devices in plamonic nanojunctions, Doctoral dissertation, Masters Thesis, Rice University, 2013.

36. Roels, J., I. de Vlaminck, L. Lagae, B. Maes, D. van Thourhout, and R. Baets, "Tunable optical forces between nanophotonic waveguides," Nature Nanotech., Vol. 4, No. 8, 510-513, 2009.
doi:10.1038/nnano.2009.186

37. Yang, X., Y. Liu, R. F. Oulton, X. Yin, and X. Zhang, "Optical forces in hybrid plasmonic waveguides," Nano Lett., Vol. 11, No. 2, 321-328, 2011.
doi:10.1021/nl103070n

38. Zhang, J., K. F. MacDonald, and N. I. Zheludev, "Optical gecko toe: Optically controlled attractive near-field forces between plasmonic metamaterials and dielectric or metal surfaces," Phys. Rev. B, Vol. 85, No. 20, 205123, 2012.
doi:10.1103/PhysRevB.85.205123

39. Ploschner, M., M. Mazilu, T. F. Krauss, and K. Dholakia, "Optical forces near a nanoantenna," J. Nanophotonics, Vol. 4, No. 1, 041570-041570, 2010.
doi:10.1117/1.3332850

40. Padgett, M. J. and R. W. Bowman, "Optical trapping and binding," Rep. Prog. Phys., Vol. 76, No. 2, 026401, 2013.
doi:10.1088/0034-4885/76/2/026401

41. Stratton, J. A., Electromagnetic Theory, Wiley, 2007.

42. Novotny, L., "Forces in optical near-fields," Near-field Optics and Surface Plasmon Polaritons, S. Kawata. ed., 123-141, Springer Berlin Heidelberg, 2001.

43. Chaumet, P. C., A. Rahmani, and M. Nieto-Vesperinas, "Optical trapping and manipulation of nano-objects with an apertureless probe," Phys. Rev. Lett., Vol. 88, No. 12, 123601, 2002.
doi:10.1103/PhysRevLett.88.123601

44. Novotny, L., R. X. Bian, and X. S. Xie, "Theory of nanometric optical tweezers," Phys. Rev. Lett., Vol. 79, No. 4, 645, 1997.
doi:10.1103/PhysRevLett.79.645

45. Yang, A. H. J., T. Lerdsuchatawanich, and D. Erickson, "Forces and transport velocities for a particle in a slot waveguide," Nano Lett., Vol. 9, No. 3, 1182-1188, 2009.
doi:10.1021/nl803832q