Vol. 48
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-05-14
Reduction of RCS Samples Using the Cubed Sphere Sampling Scheme
By
Progress In Electromagnetics Research M, Vol. 48, 103-112, 2016
Abstract
An alternative to the traditional method of sampling radar cross section data from measurements or electromagnetic code is presented and evaluated. The Cubed Sphere sampling scheme solves the problem of oversampling at high and low elevation angles and at equal equatorial resolution the scheme can reduce the number of samples required by approximately 25%. The analysis is made of an aircraft model with a monostatic radar cross section at C-band and a bistatic radar cross section at VHF-band, using Physical Optics and the Multilevel Fast Multipole Method, respectively. It was found that for the monostatic radar cross section, the Cubed Sphere sampling scheme required approximately 12% fewer samples compared to that required for traditional sampling while maintaining the same interpolation accuracy over the entire domain. For the bistatic data, it was possible to reduce the number of samples by approximately 35% for high sampling resolutions. Using spline interpolation the number of samples required could be reduced even further.
Citation
Bjorn Vilhelm Persson Martin Norsell , "Reduction of RCS Samples Using the Cubed Sphere Sampling Scheme," Progress In Electromagnetics Research M, Vol. 48, 103-112, 2016.
doi:10.2528/PIERM16022503
http://www.jpier.org/PIERM/pier.php?paper=16022503
References

1. Sinclair, G., "Early history of the OSU ElectroScience Laboratory," IEEE Transactions on Antennas and Propagation, Vol. 33, No. 2, 137-143, Feb. 1985, DOI: 10.1109/TAP.1985.1143545.
doi:10.1109/TAP.1985.1143545

2. Dybdal, R. B., "Radar cross section measurements," Proceedings of the IEEE, Vol. 75, No. 4, 498-516, Apr. 1987.
doi:10.1109/PROC.1987.13757

3. Lynch, D., Introduction to RF STEALTH, Vol. 17, SciTECH Publishing, Raleigh, 2005.

4. Olin, I. D. and F. D. Queen, "Dynamic measurement of radar cross sections," Proceedings of the IEEE, Vol. 53, No. 8, 954-961, Aug. 1965.
doi:10.1109/PROC.1965.4074

5. Hitzel, S. M., "Aerodynamics and radar signature - A combination of theoretical methods," AIAA Journal, Vol. 25, No. 5, 399-404, 1988.

6. Pitkethly, M. J., "Radar absorbing materials and their potential use in aircraft structures," IEE Colloquium on Low Profile Absorbers and Scatterers, London, 1992.

7. Gürel, L., H. Bağcı, J. C. Castelli, A. Cheraly, and F. Tardivel, "Validation through comparison: Measurement and calculation of the bistatic radar cross section of a stealth target," Radio Science, Vol. 38, No. 3, 2003.
doi:10.1029/2001RS002583

8. Bucci, O. M., C. Gennarelli, G. Riccio, and C. Savarese, "Electromagnetic fields interpolation from nonuniform samples over spherical and cylindrical surfaces," IEEE Proceedings Microwaves, Antennas and Propagation, Vol. 141, No. 2, 77-84, 1994, DOI: 10.1049/ip-map:19949838.
doi:10.1049/ip-map:19949838

9. Persson, B. and M. Norsell, "On modeling RCS of aircraft for flight simulation," IEEE Antennas and Propagation Magazine, Vol. 56, No. 4, 34-43, Aug. 2014, DOI: 10.1109/MAP.2014.6931656.
doi:10.1109/MAP.2014.6931656

10. Yang, J. and K. T. Sarkar, "Interpolation/Extrapolation of Radar Cross-Section (RCS) data in the frequency domain using the cauchy method," IEEE Transactions on Antennas and Propagation, Vol. 55, 2844-2851, Oct. 2007.

11. Davis, M. E., "Space based radar moving target detection challenges," RADAR, 143-147, 2002.

12. Manasse, R., "Idealized radar GMTI detection with space-time processing," IEEE Transactions on Aerospace and Electronic Systems, Vol. 45, No. 4, 1610-1618, Oct. 2009, DOI: 10.1109/TAES.2009.5310322.
doi:10.1109/TAES.2009.5310322

13. Li, J., G. Liu, N. Jiang, and P. Stoica, "Moving target feature extraction for airborne high-range resolution phased-array radar," IEEE Transactions on Signal Processing, Vol. 49, No. 2, 277-289, Feb. 2001, DOI: 10.1109/78.902110.
doi:10.1109/78.902110

14. Wang, Y. L., Z. Bao, and Y. N. Peng, "STAP with medium PRF mode for non-side-looking airborne radar," IEEE Transactions on Aerospace and Electronic Systems, Vol. 36, No. 2, 609-620, Apr. 2000, DOI: 10.1109/7.845249.
doi:10.1109/7.845249

15. Ulander, L., P. Förlind, P. Grahn, and A. Gustavsson, "Bistatisk och passiv radar,", FOI, Stockholm, 2014.

16. Amanipour, V. and A. Olfat, "CFAR detection for multistatic radar," Signal Processing, Vol. 91, No. 1, 28-37, Jan. 2011, DOI: 10.1016/j.sigpro.2010.06.003.
doi:10.1016/j.sigpro.2010.06.003

17. Willis, N. J. and G. Griffiths, Advances in Bistatic Radar, 91-104, SciTech Publishing, Raleigh, 2007.

18. Ronchi, C., R. Iacono, and P. S. Paolucci, "The `cubed sphere': A new method for the solution of partial differential equations in spherical geometry," Journal of Computational Physics, Vol. 124, No. 1, 93-114, Mar. 1996, DOI: 10.1006/jcph.1996.0047.
doi:10.1006/jcph.1996.0047

19. Hiroyuki, A. and I. Nozomu, "Sampling points reduction in spherical scanned TRP," IEEE Conference on Antenna Measurements & Applications, 1-4, 2014.

20. Cornelius, R. and D. Heberling, "Analysis of sampling grids for spherical near-field antenna measurements," PIERS Proceedings, 923-927, Prague, Jul. 6-9, 2015.

21. Giordanengo, G., M. Righero, F. Vipiana, G. Vecchi, and M. Sabbadini, "Fast antenna testing with reduced near field sampling," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 5, 2501-2513, May 2014, DOI: 10.1109/TAP.2014.2309338.
doi:10.1109/TAP.2014.2309338

22. Jenn, D. C., "POFACETS 4.1,", 2013, [Online], Available: http://faculty.nps.edu/jenn.

23. Van den Bosch, I., "Puma-EM 5.8,", 2014, [Online], Available: http://sourceforge.net/projects/puma-em/.
doi:10.1109/TAP.2014.2309338

24. Shaeffer, J. F., M. T. Tuley, and E. F. Knott, Radar Cross Section, 2nd Ed., 17, 44-45, Artech House Publishers, Norwood, 1993.

25. De Boor, C., A Practical Guide to Splines, 291-296, Springer New York, New York, NY, 2001.
doi:10.1007/978-1-4612-6333-3_17

26. Marsaglia, G., "Choosing a point from the surface of a sphere," The Annals of Mathematical Statistics, Vol. 43, No. 2, 645-646, 1972.
doi:10.1214/aoms/1177692644