Vol. 64
Latest Volume
All Volumes
PIERC 166 [2026] PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-05-10
A Miniaturized 90° Schiffman Phase Shifter with Open-Circuited Trans-Directional Coupled Lines
By
Progress In Electromagnetics Research C, Vol. 64, 33-41, 2016
Abstract
A symmetrical open-circuited λ/4 trans-directional (TRD) coupled line is proposed to replace the 3λ/4 reference line of an existing 90° Schiffman phase shifter for miniaturization. The coupling factor of the TRD coupled line can be used to control input matching and phase ripple, which adds an additional optimization variable to the design of a Schiffman phase shifter. There are two transmission zeros near the operational frequency band, which can be used to suppress adjacent frequency interferences and accompanies two phase leaps so that the realizable bandwidth is about 28~42%. Simulated and measured results are given to verify the proposed method.
Citation
Yuan Cao, Zhongbao Wang, Shao-Jun Fang, and Yuan'an Liu, "A Miniaturized 90° Schiffman Phase Shifter with Open-Circuited Trans-Directional Coupled Lines," Progress In Electromagnetics Research C, Vol. 64, 33-41, 2016.
doi:10.2528/PIERC16030401
References

1. Liu, Q., Y. Liu, Y. Wu, M. Su, and J. Shen, "Compact wideband circularly polarized patch antenna for CNSS applications," IEEE Antennas Wirel. Propag. Lett., Vol. 12, 1280-1283, 2013.
doi:10.1109/LAWP.2013.2283218        Google Scholar

2. Sun, L., B.-H. Sun, H. Wu, J. Yuan, and W. Tang, "Broadband, wide beam circularly polarized antenna with a novel matching structure for satellite communications," Progress In Electromagnetics Research C, Vol. 59, 159-166, 2015.
doi:10.2528/PIERC15101101        Google Scholar

3. Han, R. C., S. S. Zhong, and J. Liu, "Broadband circularly polarised dielectric resonator antenna fed by wideband switched line coupler," Electron. Lett., Vol. 50, No. 10, 725-726, 2014.
doi:10.1049/el.2014.0809        Google Scholar

4. Schiffman, B. M., "A new class of broad-band microwave 90-degree phase shifters," IRE Trans. Microwave Theory Tech., Vol. 6, No. 2, 232-237, 1958.
doi:10.1109/TMTT.1958.1124543        Google Scholar

5. Lee, C. H. and Y. H. Chang, "An alternative implementation for fabricating a Schiffman phase shifter," Microwave Opt. Technol. Lett., Vol. 55, No. 1, 9-12, 2013.
doi:10.1002/mop.27266        Google Scholar

6. Guo, Y. X., Z. Y. Zhang, and L. C. Ong, "Improved wide-band Schiffman phase shifter," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 3, 1196-1200, 2006.
doi:10.1109/TMTT.2005.864105        Google Scholar

7. Rhee, S., "Broadband Schiffman phase shifter using coupled suspended lines with tuning septums," Microwave Opt. Technol. Lett., Vol. 55, No. 5, 1036-1038, 2013.
doi:10.1002/mop.27494        Google Scholar

8. Zhang, Z., Y.-C. Jiao, S.-F. Cao, X.-M. Wang, and F.-S. Zhang, "Modified broadband Schiffman phase shifter using dentate microstrip and patterned ground plane," Progress In Electromagnetics Research Letters, Vol. 24, 9-16, 2011.
doi:10.2528/PIERL11041406        Google Scholar

9. Donelli, M., M. Rukanuzzaman, and C. E. Saavedra, "A methodology for the design of microwave systems and circuits using an evolutionary algorithm," Progress In Electromagnetics Research M, Vol. 31, 129-141, 2013.
doi:10.2528/PIERM13041607        Google Scholar

10. Donelli, M., C. Saavedra, and M. D. Rukanuzzaman, "Design and optimization of a broadband X-band bidirectional amplifier," Microwave Opt. Technol. Lett., Vol. 55, No. 8, 1730-1735, 2013.
doi:10.1002/mop.27712        Google Scholar

11. Azaro, R., G. Boato, M. Donelli, A. Massa, and E. Zeni, "Design of a prefractal monopolar antenna for 3.4–3.6GHz Wi-Max band portable devices," IEEE Antennas Wirel. Propag. Lett., Vol. 5, 116-119, 2006.
doi:10.1109/LAWP.2006.872427        Google Scholar

12. Donelli, M. and P. Febvre, "An inexpensive reconfigurable planar array for Wi-Fi applications," Progress In Electromagnetics Research C, Vol. 28, 71-81, 2012.
doi:10.2528/PIERC12012304        Google Scholar

13. Liu, Q., Y. Liu, J. Shen, S. Li, C. Yu, and Y. Lu, "Wideband single-layer 90◦ phase shifter using stepped impedance open stub and coupled-line with weak coupling," IEEE Microwave Wireless Compon. Lett., Vol. 24, No. 3, 176-178, 2014.
doi:10.1109/LMWC.2013.2295212        Google Scholar

14. Liu, Q., H. Liu, and Y. Liu, "Compact ultra-wideband 90◦ phase shifter using short-circuited stub and weak coupled line," Electron. Lett., Vol. 50, No. 20, 1454-1456, 2014.
doi:10.1049/el.2014.2271        Google Scholar

15. Sorn, M., R. Lech, and J. Mazur, "Simulation and experiment of a compact wideband 90◦ differential phase shifter," IEEE Trans. Microwave Theory Tech., Vol. 60, No. 3, 494-501, 2012.
doi:10.1109/TMTT.2011.2175244        Google Scholar

16. Wang, Y., M. E. Bialkowski, and A. M. Abbosh, "Double microstrip-slot transitions for broadband ±90◦ microstrip phase shifters," IEEE Microwave Wireless Compon. Lett., Vol. 22, No. 2, 58-60, 2012.
doi:10.1109/LMWC.2011.2181348        Google Scholar

17. Eom, S. Y. and H. K. Park, "New switched-network phase shifter with broadband characteristics," Microwave Opt. Technol. Lett., Vol. 38, No. 4, 255-257, 2003.
doi:10.1002/mop.11030        Google Scholar

18. Zheng, S. Y., W. S. Chan, and K. F. Man, "Broadband phase shifter using loaded transmission line," IEEE Microwave Wireless Compon. Lett., Vol. 20, No. 9, 498-500, 2010.
doi:10.1109/LMWC.2010.2050868        Google Scholar

19. Yeung, S. H., Q. Xue, and K. F. Man, "Broadband 90◦ differential phase shifter constructed using a pair of multisection radial line stubs," IEEE Trans. Microwave Theory Tech., Vol. 60, No. 9, 2760-2767, 2012.
doi:10.1109/TMTT.2012.2204899        Google Scholar

20. Zhang, W., Y. Liu, Y. Wu, W. Wang, M. Su, and J. Gao, "A modified coupled-line Schiffman phase shifter with short reference line," Progress In Electromagnetics Research C, Vol. 54, 17-27, 2014.        Google Scholar

21. Shie, C. I., J. C. Cheng, S. C. Chou, and Y. C. Chiang, "Transdirectional coupled-line couplers implemented by periodical shunt capacitors," IEEE Trans. Microwave Theory Tech., Vol. 57, No. 12, 2981-2988, 2009.
doi:10.1109/TMTT.2009.2034219        Google Scholar

22. Pozar, D. M., Microwave Engineering, 4 Ed., John Wiley & Sons, New York, 2012.