Vol. 65
Latest Volume
All Volumes
PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-06-26
Dual Notch UWB Fork Monopole Antenna with CRLH Metamaterial Load
By
Progress In Electromagnetics Research C, Vol. 65, 111-119, 2016
Abstract
A novel fork monopole antenna is presented using metamaterial structures. The prototype monopole antenna consists of split-ring-resonators (SRR) as an electric-LC resonator and small ground. To prove the concept, the prototype antenna is designed and fabricated for wireless communication systems. The monopole structure makes UWB impedance bandwidth condition for 2-12 GHz. On the other hand, the prototype antenna shows dual notch band characteristics at 3.5-4.5 GHz and 5.3-6 GHz for WiMAX and WLAN rejection. The prototype antenna radiates omnidirectionally and has a gain altered between -4.5 and 6.2 dBi in 2.5-12 GHz, with an average gain of 4.2 dBi. The metamaterial model is suggested for the CRLH (ELC) resonator, and in addition, the parametric study for CRLH (ELC) resonator is presented for clarification of its manner on resonance controlling. Here, the final model antenna is fabricated on an FR-4, and experimental results are compared with simulations.
Citation
Zahra Mansouri, Afsaneh Saee Arezoomand, Samaneh Heydari, and Ferdows B. Zarrabi, "Dual Notch UWB Fork Monopole Antenna with CRLH Metamaterial Load," Progress In Electromagnetics Research C, Vol. 65, 111-119, 2016.
doi:10.2528/PIERC16040711
References

1. Boney, M., S. K. A. Rahim, R. Dewan, and B. M. Sa’ad, "Dual band trapezoidal antenna with partial ground and meander line feed for GPS and WiMAX applications," Microwave and Optical Technology Letters, Vol. 56, No. 2, 497-502, 2014.
doi:10.1002/mop.28114

2. Jiang, W. and W. Che, "A novel UWB antenna with dual notched bands for WiMAX and WLAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 293-296, 2012.
doi:10.1109/LAWP.2012.2190490

3. Saee Arezoomand, A., R. A. Sadeghzadeh, and M. Naser-Moghadasi, "Investigation and improvement of the phase-center characteristics of VIVALDI’s antenna for UWB applications," Microwave and Optical Technology Letters, Vol. 58, No. 6, 1275-1281, 2016.
doi:10.1002/mop.29795

4. Brar, R. S., S. Singhal, and A. K. Singh, "Fractal dipole antenna for UWB applications," Microwave and Optical Technology Letters, Vol. 58, No. 1, 39-47, 2016.
doi:10.1002/mop.29481

5. Choe, H. H. and S. J. Lim, "Ultrawideband compact U-shaped antenna with inserted narrow strip and inverted T-shaped slot," Microwave and Optical Technology Letters, Vol. 56, No. 10, 2265-2269, 2014.
doi:10.1002/mop.28566

6. Yang, L., Y. H. Cui, and R. L. Li, "A multiband uniplanar antenna for LTE/GSM/UMTS, GPS, and WLAN/WiMAX handsets," Microwave and Optical Technology Letters, Vol. 57, No. 12, 2761-2765, 2015.
doi:10.1002/mop.29430

7. Naser-Moghadasi, M., T. Sedgee, and C. Yekan, "Semifractal antenna with dual-bands filtering and circular polarization properties using SCBP and MDGS structures," Microwave and Optical Technology Letters, Vol. 57, No. 11, 2483-2487, 2015.
doi:10.1002/mop.29372

8. Mardani, H., C. Ghobadi, and J. Nourinia, "A simple compact monopole antenna with variable single-and double-filtering function for UWB applications," IEEE Antennas Wireless Propagation Letter, Vol. 9, 1076-1079, 2010.
doi:10.1109/LAWP.2010.2091391

9. Ojaroudi, M. and Y. Ojaroudi, "Band-notched low profile monopole antenna with enhanced bandwidth by using an inverted T-shaped parasitic structure and a pair of G-shaped slots," Microwave and Optical Technology Letters, Vol. 54, No. 5, 1123-1127, 2012.
doi:10.1002/mop.26770

10. Ojaroudi, N. and M. Ojaroudi, "G-shaped monopole antenna with dual band-stop function for UWB communications," 2012 Microwave and Optical Technology Letters, Vol. 55, No. 11, 2686-2689, 2013.
doi:10.1002/mop.27849

11. Xu, P., Z.-H. Yan, and C. Wang, "Multi-band modified fork-shaped monopole antenna with dual L-shaped parasitic plane," Electronic Letter, Vol. 47, No. 6, 364-365, 2011.
doi:10.1049/el.2010.3280

12. Mishra, S. K., R. Kumar Gupta, A. Vaidya, and J. Mukherjee, "A compact dual-band fork-shaped monopole antenna for bluetooth and UWB applications," IEEE Antennas Wireless Propagation Letter, Vol. 10, 627-630, 2011.
doi:10.1109/LAWP.2011.2159572

13. Zhang, S., B. K. Lau, Y. Tan, Z. Ying, and S. He, "Mutual coupling reduction of two PIFAs with a T-shape slot impedance transformer for MIMO mobile terminals," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 3, 1521-1531, 2012.
doi:10.1109/TAP.2011.2180329

14. Barbarino, S. and F. Consoli, "UWB circular slot antenna provided with an inverted-l notch filter for the 5GHz WLAN band," Progress In Electromagnetics Research, Vol. 104, 1-13, 2010.
doi:10.2528/PIER10040507

15. Naser-Moghadasi, M., R. A. Sadeghzadeh-Sheikhan, T. Sedghi, T. Aribi, and B. S. Virdee, "UWB CPW-fed fractal patch antenna with band-notched function employing folded T-shaped element," IEEE Antennas Wireless Propagation Letter, Vol. 12, 504-507, 2013.
doi:10.1109/LAWP.2013.2256455

16. Khaleel, H. R., H. M. Al-Rizzo, and D. G. Rucker, "Effects of bending on the performance of split ring resonators," Microwave and Optical Technology Letters, Vol. 54, No. 9, 2098-2101, 2012.
doi:10.1002/mop.27011

17. Bilotti, F., A. Alu, and L. Vegni, "Design of miniaturized metamaterial patch antennas withnegative loading," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 6, 1640-1647, 2008.
doi:10.1109/TAP.2008.923307

18. Haroon, S., K. S. Alimgeer, N. Khalid, B. T. Malik, M. F. Shafique, and S. A. Khan, "A low profile UWB antenna with triple band suppression characteristics," Wireless Personal Communications, Vol. 82, No. 1, 495-507, 2015.
doi:10.1007/s11277-014-2237-6

19. Kim, C., X. Cheng, D. E. Senior, and Y.-K. Yoon, "Compact frequency and bandwidth tunable stopband filters using split ring resonators and varactors coupled transmission line," AEUInternational Journal of Electronics and Communications, Vol. 66, No. 11, 865-870, 2012.
doi:10.1016/j.aeue.2012.03.004

20. Naqui, J., M. Duran-Sindreu, and F. Martin, "Differential and single-ended microstrip lines loaded with sloted mgnetic and electric-LC resonators," International Journal of Antennas and Propagation, 1-8, 2013.
doi:10.1155/2013/640514

21. Li, K., C. Zhu, L. Li, Y.-M. Cai, and C.-H. Liang, "Design of electrically small metamaterial antenna with ELC and EBG loading," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 678-681, 2013.
doi:10.1109/LAWP.2013.2264099

22. Zarrabi, F. B., M. Rahimi, Z. Mansouri, and I. A. Lafmajani, "Miniaturization of microstrip antenna by CRLH-TL technique," Wireless Personal Communications, Vol. 81, No. 3, 1091-1100, 2015.
doi:10.1007/s11277-014-2173-5

23. Ha, J., K. Kwon, Y. Lee, and J. Choi, "Hybrid mode wideband patch antenna loaded with a planar metamaterial unit cell," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 1143-1147, 2012.
doi:10.1109/TAP.2011.2173114

24. Park, J.-H., Y.-H. Ryu, J.-G. Lee, and J.-H. Lee, "Epsilon negative zeroth-order resonator antenna," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 12, 3710-3712, 2007.
doi:10.1109/TAP.2007.910505

25. Fashi, A. A., M. Kamyab, and M. Barati, "A microstrip small-sized array antenna based on the meta-material zeroth-order resonator," Progress In Electromagnetics Research C, Vol. 14, 89-101, 2010.
doi:10.2528/PIERC10032302