Vol. 48
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-06-09
ISAR Imaging Based on Iterative Reweighted Lp Block Sparse Reconstruction Algorithm
By
Progress In Electromagnetics Research M, Vol. 48, 155-162, 2016
Abstract
Sparse signal recovery algorithms can be used to improve radar imaging quality by using the sparse property of strong scatterers. Traditional sparse inverse synthetic aperture radar (ISAR) imaging algorithms mainly consider the recovery of sparse scatterers. However, the scatterers of an ISAR target usually exhibit block or group sparse structure. By utilizing the inherent block sparse structure of ISAR target images, an iterative reweighted lp(0 < p ≤ 1) block sparse signal recovery algorithm is proposed to enhance imaging quality in this paper. Firstly, an ISAR imaging signal model is established with the aid of sparse basis, and the imaging is mathematically converted into block reweighted cost function optimization problem. Then, an iterative algorithm is used to solve the reweighted function minimization problem. In each iteration, the weights are updated based on the closed form solution of the previous iteration. The proposed method is effective to exploit the underlying block sparse structures which does not need the prior knowledge of the number of the blocks. Real data ISAR imaging results are provided to verify that the proposed algorithm in this paper can achieve better images than the images obtained by several popular sparse signal recovery algorithms.
Citation
Junjie Feng Gong Zhang , "ISAR Imaging Based on Iterative Reweighted Lp Block Sparse Reconstruction Algorithm," Progress In Electromagnetics Research M, Vol. 48, 155-162, 2016.
doi:10.2528/PIERM16041501
http://www.jpier.org/PIERM/pier.php?paper=16041501
References

1. Jung, J. H., K. T. Kim, S. H. Kim, and S. H. Park, "An efficient ISAR imaging method for multiple targets," Progress In Electromagnetics Research, Vol. 146, 133-142, 2014.
doi:10.2528/PIER14042905

2. Kim, D., D. Seo, and H. Kim, "Efficient classification of ISAR images," IEEE Transaction on Antennas and Propagation, Vol. 53, No. 5, 1611-1621, 2005.
doi:10.1109/TAP.2005.846780

3. Wang, H., Y. Qun, M. Xing, and S. Zhang, "ISAR imaging via sparse probing frequencies," IEEE Geosci. Remote Sens. Lett., Vol. 8, No. 3, 451-455, 2011.
doi:10.1109/LGRS.2010.2085076

4. Needell, D. and R. Vershynin, "Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit," IEEE Journal of Selected Topics in Signal Processing, Vol. 4, No. 9, 317-334, 2009.

5. Tropp, J. A. and A. C. Gilbert, "Signal recovery from random measurements via orthogonal matching pursuit," IEEE Transactions on Information Theory, Vol. 53, No. 12, 4655-4666, 2007.
doi:10.1109/TIT.2007.909108

6. Demba, B., B. Behtash, and L. Patrick, "Convergence and stability of iteratively re-weighted least squares algorithms," IEEE Trans. Signal Process., Vol. 62, No. 1, 183-159, 2014.
doi:10.1109/TSP.2013.2287685

7. Zhang, X. Z., J. H., Qin, and G. J. Li, "SAR Target classification using bayesian compressive sensing with scattering centers features," Progress In Electromagnetics Research, Vol. 136, 385-407, 2013.
doi:10.2528/PIER12120705

8. Cetin, M., I. Stojanovic, O. Onhon, K. Varshney, S. Samadi, W. C. Karl, and A. S. Willsky, "Sparsity-driven synthetic aperture radar imaging," IEEE Signal Processing Magazine, Vol. 31, No. 4, 27-40, 2014.
doi:10.1109/MSP.2014.2312834

9. Liu, J., X. Li, S. Xu, and Z. Zhuang, "ISAR imaging of non-uniform rotation targets with limited pulses via compressed sensing," Progress In Electromagnetics Research B, Vol. 41, 285-305, 2012.
doi:10.2528/PIERB12041715

10. Zhang, L., et al., "Achieving higher resolution isar imaging with limited pulses via compressed sampling," IEEE Geosci. Remote Sens. Lett., Vol. 6, No. 3, 57-571, 2009.

11. Ma, C. Z., T. S. Yeo, Y. B. Zhao, and J. J. Feng, "MIMO radar 3D imaging based on combined amplitude and total variation cost function with sequential order one negative exponential form," IEEE Trans. Image Process., Vol. 23, No. 5, 2168-2183, 2014.
doi:10.1109/TIP.2014.2311735

12. Tan, X., W. Roberts, J. Li, and P. Stoica, "Sparse learning via iterative minimization with application to MIMO radar imaging," IEEE Trans. Signal Process., Vol. 59, No. 3, 1088-1101, 2011.
doi:10.1109/TSP.2010.2096218

13. Eldar, Y., P. Kuppinger, and H. Bolcskei, "Block-sparse signals: Uncertainty relations and efficient recovery," IEEE Trans. Signal Process., Vol. 58, No. 6, 3042-3054, 2010.
doi:10.1109/TSP.2010.2044837

14. Eldar, Y. and M. Mishali, "Robust recovery of signals from a structured union of subspaces," IEEE Transactions on Information Theory, Vol. 55, No. 1, 5302-5316, 2009.
doi:10.1109/TIT.2009.2030471

15. Baraniuk, R. G., V. Cevher, M. F. Duarte, and C. Hegde, "Model-based compressive sensing," IEEE Transactions on Information Theory, Vol. 56, No. 4, 1982-2001, 2010.
doi:10.1109/TIT.2010.2040894

16. Mohimani, H., M. Babaie-Zadeh, and C. Jutten, "A fast approach for overcomplete sparse decomposition based on smoothed l0 norm," IEEE Trans. Signal Process., Vol. 57, No. 1, 289-301, 2009.
doi:10.1109/TSP.2008.2007606

17. Wipf, D. P. and B. D. Rao, "Sparse Bayesian learning for basis selection," IEEE Trans. Signal Process., Vol. 52, No. 8, 2153-2164, 2004.
doi:10.1109/TSP.2004.831016

18. Stojnic, M., F. Parvaresh, and B. Hassibi, "On the reconstruction of block-sparse signals with an optimal number of measuremets," IEEE Trans. Signal Process., Vol. 57, No. 8, 3075-3085, 2009.
doi:10.1109/TSP.2009.2020754

19. Gong, P. C. and Z. H. Shao, "Target estimation by iterative reweighted lq minimization for MIMO radar," Signal Processing, Vol. 101, 35-41, 2014.
doi:10.1016/j.sigpro.2014.01.009

20. Chen, S., D. Donoho, and M. Saunders, "Atomic decomposition by basis pursuit," SIAM Review, 129-159, 2001.
doi:10.1137/S003614450037906X

21. Stankovic, L., "On the ISAR image analysis and recovery with unavailable or heavily corrupted data," IEEE Transactions on Aerospace and Electronic Systems, Vol. 51, No. 3, 2093-2106, 2015.
doi:10.1109/TAES.2015.140413