Vol. 48
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-06-20
Study of Parabolic Equation Method for Millimeter-Wave Attenuation in Complex Meteorological Environments
By
Progress In Electromagnetics Research M, Vol. 48, 173-181, 2016
Abstract
The parabolic equation (PE) method for estimating propagation characteristics of millimeter wave, which takes into account of attenuation caused by complex meteorological environment, is proposed. The meteorological environment is treated as a mixture composed of hydrometeors and atmospheric gases. Effective permittivity of the mixture is considered in this paper. Based on the effective permittivity, the PE model for estimating propagation attenuation of millimeter wave is developed via modifying the refractive index. Finally, the model is employed to simulate the propagation characteristics of millimeter wave in complex geographical environments of irregular terrain and rough sea surface, and in complex meteorological environments of standard atmosphere, rain and fog.
Citation
Nan Sheng, Xuan-Ming Zhong, Qinghong Zhang, and Cheng Liao, "Study of Parabolic Equation Method for Millimeter-Wave Attenuation in Complex Meteorological Environments," Progress In Electromagnetics Research M, Vol. 48, 173-181, 2016.
doi:10.2528/PIERM16050201
References

1. Sebastian, D., A. Serdal, S. Steffen, M. Hermann, T. Axel, L. Amulf, A. Oliver, Z. Thomas, and K. Ingmar, "A W-band MMIC radar system for remote detection of vital signs," J. Infrared Milli. Terahz. Waves, Vol. 30, No. 12, 1250-1267, 2012.

2. Ziegler, V., F. Schubert, B. Schulte, A. Giere, R. Koerber, and T. Waanders, "Helicopter near-field obstacle warning system based on low-cost millimeter-wave radar technology," IEEE Trans. Microw. Theory Tech., Vol. 61, No. 1, 658-665, 2013.
doi:10.1109/TMTT.2012.2228220

3. Brady, J., N. Behdad, and A. M. Sayeed, "Beamspace MIMO for millimeter-wave communications: System architecture, modeling, analysis, and measurements," IEEE Trans. Antennas Propag., Vol. 61, No. 7, 3814-3827, 2013.
doi:10.1109/TAP.2013.2254442

4. Wang, P., Y. L, and B. Vucetic, "Millimeter wave communications with symmetric uniform circular antenna arrays," IEEE Commun. Lett., Vol. 18, No. 8, 1307-1310, 2014.
doi:10.1109/LCOMM.2014.2332334

5. Xiong, H., Radiowave Propagation, 487-501, Publishing House of Electronics Industry, 2000.

6. Marcus, M. and B. Pattan, "Millimeter wave propagation: Spectrum management implications," IEEE Microwave Mag., Vol. 6, No. 2, 54-62, 2005.
doi:10.1109/MMW.2005.1491267

7. Leontovich, M. A. and V. A. Fock, "Solution of propagation of electromagnetic waves along the Earth’s surface by the method of parabolic equation," J. Phys. USSR, Vol. 10, 13-23, 1946.

8. Levy, M. F., Parabolic Equation Methods for Electromagnetic Wave Propagation, IEE Press, 2000.
doi:10.1049/PBEW045E

9. Donohue, D. J. and J. R. Kuttler, "Propagation modeling over terrain using the parabolic wave equation," IEEE Trans. Antennas Propag., Vol. 48, No. 2, 260-277, 2000.
doi:10.1109/8.833076

10. Apaydin, G. and L. Sevgi, "A novel split-step parabolic-equation package for surface-wave propagation prediction along multiple mixed irregular-terrain paths," IEEE Antennas Propag. Mag., Vol. 52, No. 4, 90-97, 2010.
doi:10.1109/MAP.2010.5638238

11. Karimian, A., C. Yardim, P. Gerstoft, W. S. Hodgkiss, and A. E. Barrios, "Multiple grazing angle sea clutter modeling," IEEE Trans. Antennas Propag., Vol. 60, No. 9, 4408-4417, 2012.
doi:10.1109/TAP.2012.2207033

12. Apaydin, G. and L. Sevgi, "MATLAB-based FEM-parabolic-equation tool for path-loss calculations along multi-mixed-terrain paths," IEEE Antennas Propag. Mag., Vol. 56, No. 3, 221-236, 2014.
doi:10.1109/MAP.2014.6867720

13. Sheng, N., C. Liao, W. B. Lin, Q. H. Zhang, and R. J. Bai, "Modeling of millimeter wave propagation in rain based on parabolic equation method," IEEE Antennas Wireless Propag. Lett., Vol. 13, 3-6, 2014.
doi:10.1109/LAWP.2013.2294737

14. Feit, M. D. and J. A. Fleck, "Light propagation in graded-index fibers," Application Optics, Vol. 17, No. 24, 3990-3998, 1978.
doi:10.1364/AO.17.003990

15. Liebe, H. J., "MPM - An atmospheric millimeter-wave propagation model," Int. J. Infrared Millimeter Waves, Vol. 10, No. 6, 631-650, 1989.
doi:10.1007/BF01009565

16. Wang, Y. and G. Y. Lu, "Research and stimulation of processing method on radio propagation environment attenuation over the ocean," Ship Electronic Engineering, Vol. 33, No. 5, 86-89, 2013.

17. ITU-R, , Attenuation by atmospheric gases, ITU-R Recommendation P.676-9, Geneva, 2012.

18. Sihvola, A. H., Electromagnetic Mixing Formulas and Applications, The Institution of Electrical Engineers Press, 1999.
doi:10.1049/PBEW047E

19. Huang, J. Y., W. He, and S. H. Gong, "The distortion characteristics of a pulse wave propagating through fog medium at millimeter wave band," J. Infrared Milli. Terahz. Waves, Vol. 28, No. 10, 889-899, 2007.
doi:10.1007/s10762-007-9266-0

20. Kharadly, M. M. Z. and S.-V. C. Angela, "A simplified approach to the evaluation of EMW propagation characteristics in rain and melting snow," IEEE Trans. Antennas Propag., Vol. 36, No. 2, 282-296, 1988.
doi:10.1109/8.1106

21. Donohue, D. J. and J. R. Kuttler, "Propagation modeling over terrain using the parabolic wave equation," IEEE Trans. Antennas Propag., Vol. 48, No. 2, 260-277, 2000.
doi:10.1109/8.833076