1. Akyildiz, I. F., J. M. Jornet, and C. Han, "Terahertz band: Next frontier for wireless communications," Physical Communication, Vol. 12, 16-32, 2014.
doi:10.1016/j.phycom.2014.01.006 Google Scholar
2. Khiabani, N., "Modelling, design and characterisation of terahertz photoconductive antennas,", Doctoral Thesis, University of Liverpool, 2013. Google Scholar
3. Huang, Y., N. Khiabani, Y. Shen, and D. Li, "Terahertz photoconductive antenna efficiency," 2011 International Workshop on Antenna Technology (iWAT), 152-156, 2011.
doi:10.1109/IWAT.2011.5752384 Google Scholar
4. Danana, B., B. Choudhury, and R. M. Jha, "Design of high gain microstrip antenna for THz wireless communications," International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, Vol. 3, 711-716, 2014. Google Scholar
5. Llatser, I., C. Kremers, D. N. Chigrin, J. M. Jornet, M. C. Lemme, A. Cabellos-Aparicio, et al. "Radiation characteristics of tunable graphennas in the terahertz band," Radioengineering, Vol. 21, 946-953, 2012. Google Scholar
6. Niu, T., W. Withayachumnankul, B. S. Y. Ung, H. Menekse, M. Bhaskaran, S. Sriram, et al. "Reflectarray antennas for terahertz communications,", arXiv preprint arXiv:1210.0653, 2012. Google Scholar
7. Hanson, G., "Radiation efficiency of nano-radius dipole antennas in the microwave and far-infrared regimes," IEEE Antennas and Propagation Magazine, Vol. 50, 66-77, 2008.
doi:10.1109/MAP.2008.4563565 Google Scholar
8. Walther, M., D. Cooke, C. Sherstan, M. Hajar, M. Freeman, and F. Hegmann, "Terahertz conductivity of thin gold films at the metal-insulator percolation transition," Physical Review B, Vol. 76, 125408, 2007.
doi:10.1103/PhysRevB.76.125408 Google Scholar
9. Lacour, S. P., D. Chan, S. Wagner, T. Li, and Z. Suo, "Mechanisms of reversible stretchability of thin metal films on elastomeric substrates," Applied Physics Letters, Vol. 88, 204103, 2006.
doi:10.1063/1.2201874 Google Scholar
10. Sharma, A. and G. Singh, "Rectangular microstirp patch antenna design at THz frequency for short distance wireless communication systems," Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 30, 1-7, 2009.
doi:10.1007/s10762-008-9416-z Google Scholar
11. Bayram, Y., Y. Zhou, B. S. Shim, S. Xu, J. Zhu, N. Kotov, et al. "E-textile conductors and polymer composites for conformal lightweight antennas," IEEE Transactions on Antennas and Propagation, Vol. 58, 2732-2736, 2010.
doi:10.1109/TAP.2010.2050439 Google Scholar
12. Deligeorgis, G., M. Dragoman, D. Neculoiu, D. Dragoman, G. Konstantinidis, A. Cismaru, et al. "Microwave propagation in graphene," Applied Physics Letters, Vol. 95, 073107, 2009.
doi:10.1063/1.3202413 Google Scholar
13. Geim, A. K. and K. S. Novoselov, "The rise of graphene," Nature Materials, Vol. 6, 183-191, 2007.
doi:10.1038/nmat1849 Google Scholar
14. Anand, S., D. S. Kumar, R. J.Wu, and M. Chavali, "Graphene nanoribbon based terahertz antenna on polyimide substrate," Optik-International Journal for Light and Electron Optics, Vol. 125, 5546-5549, 2014.
doi:10.1016/j.ijleo.2014.06.085 Google Scholar
15. Akyildiz, I. F. and J. M. Jornet, "Electromagnetic wireless nanosensor networks," Nano Communication Networks, Vol. 1, 3-19, 2010.
doi:10.1016/j.nancom.2010.04.001 Google Scholar
16. Ju, L., B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, et al. "Graphene plasmonics for tunable terahertz metamaterials," Nature Nanotechnology, Vol. 6, 630-634, 2011.
doi:10.1038/nnano.2011.146 Google Scholar
17. Balanis, C. A., Antenna Theory: Analysis and Design, Vol. 1, John Wiley & Sons, 2005.
18. Wang, L., S. M. Uppuluri, E. X. Jin, and X. Xu, "Nanolithography using high transmission nanoscale bowtie apertures," Nano Letters, Vol. 6, 361-364, 2006.
doi:10.1021/nl052371p Google Scholar
19. Llatser, I., C. Kremers, A. Cabellos-Aparicio, J. M. Jornet, E. Alarcón, and D. N. Chigrin, "Graphene-based nano-patch antenna for terahertz radiation," Photonics and Nanostructures-Fundamentals and Applications, Vol. 10, 353-358, 2012. Google Scholar
20. Thampy, A. S., M. S. Darak, and S. K. Dhamodharan, "Analysis of graphene based optically transparent patch antenna for terahertz communications," Physica E: Low-dimensional Systems and Nanostructures, Vol. 66, 67-73, 2015.
doi:10.1016/j.physe.2014.09.023 Google Scholar
21. Bala, R. and A. Marwaha, "Development of computational model for tunable characteristics of graphene based triangular patch antenna in THz regime," Journal of Computational Electronics, 1-6, 2015. Google Scholar
22. Tamagnone, M., J. S. Gomez-Diaz, J. R. Mosig, and J. Perruisseau-Carrier, "Reconfigurable terahertz plasmonic antenna concept using a graphene stack," Applied Physics Letters, Vol. 101, 214102, 2012.
doi:10.1063/1.4767338 Google Scholar
23. Hanson, G. W., "Dyadic Green’s functions for an anisotropic, non-local model of biased graphene," IEEE Transactions on Antennas and Propagation, Vol. 56, 747-757, 2008.
doi:10.1109/TAP.2008.917005 Google Scholar
24. Gusynin, V. P., S. G. Sharapov, and J. P. Carbotte, "Magneto-optical conductivity in graphene," Journal of Physics: Condensed Matter, Vol. 19, 026222, 2006.
doi:10.1088/0953-8984/19/2/026222 Google Scholar
25. Radwan, A. H., M. D’Amico, and G. Gentili, "Reconfigurable THz Yagi antenna based on hybrid graphene-metal layout," 2014 Loughborough Antennas and Propagation Conference (LAPC), 671-675, 2014.
doi:10.1109/LAPC.2014.6996483 Google Scholar
26. Costa, K., V. Dmitriev, C. Nascimento, and G. Silvano, "Graphene nanoantennas with different shapes," 2013 SBMO/IEEE MTT-S International Microwave & Optoelectronics Conference (IMOC), 1-5, 2013. Google Scholar