1. Chu, H. Y., Y. Fan, and C. S. Zhang, "A novel design for the flywheel energy storage system," Proceedings of the Eighth International Conference on Electrical Machines and Systems, Vol. 2, 1583-1587, 2005.
doi:10.1109/ICEMS.2005.202817 Google Scholar
2. Ohji, T., et al. "Conveyance test by oscillation and rotation to a permanent magnet repulsive-type conveyor," IEEE Trans. Magn., Vol. 40, No. 4, 3057-3059, 2004.
doi:10.1109/TMAG.2004.832263 Google Scholar
3. Hussein, A., et al. "Application of the repulsive-type magnetic bearing for manufacturing micromass measurement balance equipment," IEEE Trans. Magn., Vol. 41, No. 10, 3802-3804, 2005.
doi:10.1109/TMAG.2005.854929 Google Scholar
4. Yonnet, J. P., "Passive magnetic bearings with permanent magnets," IEEE Trans. Magn., Vol. 14, No. 5, 803-805, 1978.
doi:10.1109/TMAG.1978.1060019 Google Scholar
5. Lang, M., "Fast calculation method for the forces and stiffness of permanent-magnet bearings," 8th International Symposium on Magnetic Bearing, 533-537, 2002. Google Scholar
6. Jiang, W., et al. "Forces and moments in axially polarized radial permanent magnet bearings," Proceedings of Eighth International Symposium on Magnetic Bearings, 521-526, Mito, Japan, 2002. Google Scholar
7. Ravaud, R. and G. Lemarquand, "Comparison of the Coulombian and Amperian current models for calculating the magnetic field produced by radially magnetized arc-shaped permanent magnets," Progress In Electromagnetics Research, Vol. 95, 309-327, 2009. Google Scholar
8. Ravaud, R., G. Lemarquand, and V. Lemarquand, "Force and stiffness of passive magnetic bearings using permanent magnets. Part 1: Axial magnetization," IEEE Trans. Magn., Vol. 45, No. 7, 2996-3002, 2009.
doi:10.1109/TMAG.2009.2016088 Google Scholar
9. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Discussion about the analytical calculation of the magnetic field created by permanent magnets," Progress In Electromagnetics Research B, Vol. 11, 281-297, 2009.
doi:10.2528/PIERB08112102 Google Scholar
10. Bekinal, S. I., A. R. Tumkur Ramakrishna, and S. Jana, "Analysis of axially magnetized permanent magnetic bearing characteristics," Progress In Electromagnetic Research B, Vol. 44, 327-343, 2012.
doi:10.2528/PIERB12080910 Google Scholar
11. Lijesh, K. P. and H. Hirani, "Development of analytical equations for design and optimization of axially polarized radial passive magnetic bearing," Journal of Tribology, Vol. 137, 011103-9, 2015. Google Scholar
12. Mishra, M. and N. Gupta, "Monte Carlo integration technique for the analysis of electromagnetic scattering from conducting surfaces," Progress In Electromagnetics Research, Vol. 79, 91-106, 2008.
doi:10.2528/PIER07092005 Google Scholar
13. Pennanen, T. and M. Koivu, "An adaptive importance sampling technique," Monte Carlo and Quasi-Monte Carlo Methods, 443-455, Springer, 2004. Google Scholar
14. Alrefaei, M. H. and H. M. Abdul-Rahman, "An adaptive Monte Carlo integration algorithm with general division approach," Math. Comput. Simul., 2007, doi:10.1016/j.matcom.2007.09.009. Google Scholar
15. Jourdain, B., "Adaptive variance reduction techniques in finance," Radon Series Comp. Appl. Math., Vol. 8, 1-18, De Gruyter, 2009. Google Scholar
16. Parker, R. J., "Analytical methods for permanent magnet design," Electro-Technology, 1960. Google Scholar