Vol. 51
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-11-04
A Novel Micro-g Emulation System Using Active Magnetic Compensator for Complex Space Operations
By
Progress In Electromagnetics Research M, Vol. 51, 185-194, 2016
Abstract
To perform the ground simulation experiments of the complex space operations, this work proposes a new active magnetic suspension compensator. The large-gap magnetic suspension compensator (LGMSC) is a conceptual design for a ground-based experiment which could be used to investigate the technology issues associated with accurate suspended element control at large gaps. This compensator can be used as the out-of-plane electromagnetic actuator for the 3-DOF fine stage in certain high precision positioning applications. Based on the equivalent current method, we explain the basics of the magnetic suspension compensator and analyze its advantages. A gravity compensator has been realized in a test setup that shows the feasibility of the chosen modeling technique and of magnetic gravity compensation.
Citation
Tao Wen, Zhengfeng Ming, Zhanxia Zhu, Wenzhi Zhu, and Shuang Ning, "A Novel Micro-g Emulation System Using Active Magnetic Compensator for Complex Space Operations," Progress In Electromagnetics Research M, Vol. 51, 185-194, 2016.
doi:10.2528/PIERM16082204
References

1. Zhu, Z. and J. Yuan, Test Facilities for Micro-G Effects of Spacecraft Operation, China Astronautic Publishing House, 2013 (in Chinese).

2. Yuan, J. and Z. Zhu, "An innovative method for simulating microgravity effects through combining electromagnetic force and buoyancy," Advances in Space Research, Vol. 56, No. 2, 355-364, Jul. 15, 2015.
doi:10.1016/j.asr.2015.04.007        Google Scholar

3. Akin, D. L., M. Bowden, and J. Spofford, "Neutral buoyancy evaluation of technologies for space station external operation," The 35th Congress of the International Astronautical Federation, 84-38, 1984.        Google Scholar

4. Brown, H. B. and J.M. Dolan, "A novel gravity compensation system for space robots," Proceedings of the ASCE Specialty Conference on Robotics for Challenging Environments, 250-258, 1994.        Google Scholar

5. Chappell, S. P., J. R. Norcross, and K. G. Clowers, "Final report of the integrated parabolic flight test: effects of varying gravity, center of gravity, and mass on the movement biomechanics and operator compensation of ambulation and exploration tasks,", NASA/TP-2010-21637, 2010.        Google Scholar

6. Viswanathan, S. P., A. Sanyal, and L. Holguin, "Dynamics and control of a six degrees of freedom ground simulator for autonomous rendezvous and proximity operation of spacecraft," Proceedings of AIAA Guidance, Navigation, and Control Conference, 2012-4926, 2012.        Google Scholar

7. Quettier, L., H. Félice, A. Mailfert, D. Chatain, and D. Beysens, "Magnetic compensation of gravity forces in liquid/gas mixtures:surpassing intrinsic limitations of a superconducting magnet by using ferromagnetic inserts," Eur. Phys. J. Appl. Phys., Vol. 32, 167-175, 2005.
doi:10.1051/epjap:2005074        Google Scholar

8. Cheng, Z., "Neutral buoyancy microgravity environment simulation technology," Spacecraft Environment Engineering, Vol. 1, 1-6, 2000.        Google Scholar

9. Wunenburger, R., D. Chatain, Y. Garrabos, and D. Beysens, "Magnetic compensation of gravity forces in (p-) hydrogen near its critical point: Application to weightless conditions," Phys. Rev. E, Vol. 62, 469-476, 2000.
doi:10.1103/PhysRevE.62.469        Google Scholar

10. Qi, N., "The prmiary discussion for the ground smi ulation system of spatial microgravity," Aerospace Control., Vol. 29, No. 3, 95-100, 2011.        Google Scholar

11. Matunaga, S., "Micro-gravity experiments of space robotics and space-used mechanisms at Tokyo Institute of Technology," J. Jpn. Soc. Microgravity Appl., Vol. 19, 101-5, 2002.        Google Scholar

12. Han, O., D. Kienholz, P. Janzen, and S. Kidney, "Gravity-offloading system for large-displacement ground testing of spacecraft mechanisms," Proceedings of 40th Aerospace Mechanisms Symposium, 119-132, 2010.        Google Scholar

13. Chen, S. F., T. Mei, T. Zhang, and X. H. Wang, "Design of the controller for a crowd simulation system of spatial microgravity environment," Robot, Vol. 30, No. 3, 201-4, 2008 (Chinese).        Google Scholar

14. Cheng, Z., "Neutral buoyancy microgravity environment simulation technology," Spacecraft Environment Engineering, Vol. 1, 1-6, 2000.        Google Scholar

15. Hol, S. A. J., E. Lomonova, and A. J. A. Vandenput, "Design of a magnetic gravity compensation system," Precis. Eng., Vol. 30, No. 3, 265-273, Jul. 2006.
doi:10.1016/j.precisioneng.2005.09.005        Google Scholar

16. Choi, Y. M., M. G. Lee, D. G. Gweon, and J. Jeong, "A new magnetic bearing using Halbach magnet arrays for a magnetic levitation stage," Rev. Sci. Instrum., Vol. 80, No. 4, Art. ID. 045106, Apr. 2009.        Google Scholar

17. Choi, Y. M. and D. G. Gweon, "A high-precision dual-servo stage using Halbach linear active magnetic bearings," IEEE/ASME Trans. Mechatronics, Vol. 16, No. 5, 925-931, Oct. 2011.
doi:10.1109/TMECH.2010.2056694        Google Scholar

18. Choi, K. B., Y. G. Cho, T. Shishi, and A. Shimokohbe, "Stabilization of one degree-of-freedom control type levitation table with magnet repulsive forces," Mechatronics, Vol. 13, No. 6, 587-603, Jul. 2003.
doi:10.1016/S0957-4158(02)00032-6        Google Scholar

19. Robertson, W. S., M. R. F. Kidner, B. S. Cazzolato, and A. C. Zander, "Theoretical design parameters for a quasi-zero stiffness magnetic spring for vibration isolation," J. Sound Vib., Vol. 326, No. 1, 88-103, Sep. 2009.
doi:10.1016/j.jsv.2009.04.015        Google Scholar

20. Ding, C., J. L. G. Janssen, A. A. H. Damen, and P. P. J. van den Bosch, "Modeling and control of a 6-DOF contactless electromagnetic suspension system with passive gravity compensation," Proc. 19th Int. Conf. Elect. Mach., 1-6, Rome, Italy, Sep. 6-7, 2010.        Google Scholar

21. Janssen, J. L. G., J. J. H. Paulides, J. C. Compter, and E. A. Lomonova, "Three-dimensional analytical calculation of the torque between permanent magnets in magnetic bearings," IEEE Trans. Magn., Vol. 46, No. 6, 1748-1751, Jun. 2010.
doi:10.1109/TMAG.2010.2043224        Google Scholar

22. Janssen, J. L. G., J. J. H. Paulides, E. A. Lomonova, B. Delinchant, and J. P. Yonnet, "Design study on a magnetic gravity compensator with unequal magnet arrays," Mechatronics, Vol. 23, No. 2, 197-203, Mar. 2013.
doi:10.1016/j.mechatronics.2012.08.003        Google Scholar

23. Nabeel, A. S. and B. Amitave, "Electropermanent suspension system for acquiring large air-gaps to suspend loads," IEEE Tran. on Mag., Vol. 6, No. 31, 4193-4195, 1995.        Google Scholar

24. Bekinal, S. I., T. R. Anil, and S. Jana, "Analysis of axially magnetized permanent magnet bearing characteristics," Progress In Electromagnetics Research B, Vol. 44, 327-343, 2012.
doi:10.2528/PIERB12080910        Google Scholar

25. Ausserlechner, U., "Closed analytical formulae for multi-pole magnetic rings," Progress In Electromagnetics Research B, Vol. 38, 71-105, 2012.
doi:10.2528/PIERB11112606        Google Scholar

26. Babic, S. and C. Akyel, "Magnetic force between inclined circular loops (Lorentz approach)," Progress In lectromagnetics Research B, Vol. 38, 333-349, 2012.
doi:10.2528/PIERB12011501        Google Scholar

27. Ravaud, R., G. Lemarquand, and V. Lemarquand, "Halbach structures for permanent magnets bearings," Progress In Electromagnetic Research M, Vol. 14, 263-277, 2010.
doi:10.2528/PIERM10100401        Google Scholar

28. Janssen, J. L. G., J. J. H. Paulides, and E. A. Lomonova, "Study of magnetic gravity compensator topologies using an abstraction in the analytical interaction equations," Progress In Electromagnetics Research, Vol. 128, 75-90, 2012.
doi:10.2528/PIER11101408        Google Scholar

29. Morishita, M., T. Azukizawa, and S. Kanda, "A new maglev system for magnetically levitated carrier system," IEEE Transactions on Vehicular Technology, Vol. 38, No. 4, Nov. 1989.        Google Scholar

30. White, G. C. and Y. S. Xu, "An active vertical-direction gravity compensation system," IEEE Transactions on Instrumentation and Measurement, Vol. 43, No. 6, 786-792, 1994.
doi:10.1109/19.368066        Google Scholar

31. Golob, M. and B. Tovornik, "Modeling and control of the magnetic suspension system," ISA Transactions, Vol. 42, No. 1, 89-100, 2003.
doi:10.1016/S0019-0578(07)60116-5        Google Scholar