1. U.S. Energy Information Administration 2011-2012, , , Available on line: http://www.eia.gov/todayinenergy/detail.cfm?id=10271/ (accessed on 26 August 2016).
2. Vrachopoulos, M. G., M. K. Koukou, D. G. Stavlas, V. N. Stamatopoulos, A. F. Gonidis, and E. D. Kravvaritis, "Testing reflective insulation for improvement of buildings energy efficiency," Central European Journal of Engineering, Vol. 2, 83-90, 2012. Google Scholar
3. Green Public Procurement Thermal Insulation Technical Background Report, , , Report for the European Commission - DG Environment by AEA, Harwell, June 2010, Owner, Editor: European Commission, DG Environment-G2, B-1049, Brussels.
doi:10.1016/j.buildenv.2011.01.009
4. Saber, H. H., W. Maref, M. C. Swinton, and C. St-Onge, "Thermal analysis of above-grade wall assembly with low emissivity materials and furred-airspace," Journal of Building and Environment, Vol. 46, 1403-1414, 2011.
doi:10.1016/j.buildenv.2011.10.022 Google Scholar
5. Saber, H. H., M. C. Swinton, P. Kalinger, and R. M. Paroli, "Long-term hygrothermal performance of white and black roofs in North American climates," Journal of Building and Environment, Vol. 50, 141-154, 2012. Google Scholar
6. Saber, H. H., M. C. Swinton, P. Kalinger, and R. M. Paroli, "Hygrothermal simulations of cool reflective and conventional roofs," Proceedings of the 2011 International Roofing Symposium, Washington, D.C., September 06-11, 2011.
doi:10.1177/1744259112444021 Google Scholar
7. Saber, H. H., W. Maref, G. Sherrer, and M. C. Swinton, "Numerical modeling and experimental investigations of thermal performance of reflective insulations," Journal of Building Physics, Vol. 36, 163-177, 2012.
doi:10.1080/19401493.2010.532568 Google Scholar
8. Saber, H. H., W. Maref, A. H. Elmahdy, M. C. Swinton, and R. Glazer, "3D heat and air transport model for predicting the thermal resistance of insulated wall assemblies," Journal of Building Performance Simulation, Vol. 5, 75-91, 2012. Google Scholar
9. Maref, W., H. H. Saber, R. Glazer, M. M. Armstrong, M. Nicholls, A. H. Elmahdy, and M. C. Swinton, "Energy performance of highly insulated wood-frame wall systems using a VIP," 10th International Vacuum Insulation Symposium, Ottawa, Ontario, September 15-11, 2011. Google Scholar
10. Saber, H. H., W. Maref, A. H. Elmahdy, M. C. Swinton, and R. Glazer, "3D thermal model for predicting the thermal resistance of spray polyurethane foam wall assemblies," 11th International Conference on Thermal Performance of the Exterior Envelopes of Whole Buildings XI, Clearwater, FL, USA, December 05-10, 2010. Google Scholar
11. Elmahdy, A. H., W. Maref, H. H. Saber, M. C. Swinton, and R. Glazer, "Assessment of the energy rating of insulated wall assemblies - A step towards building energy labeling," 10th International Conference for Enhanced Building Operation, Kuwait, October 26-10, 2010. Google Scholar
12. Elmahdy, A. H., W. Maref, M. C. Swinton, H. H. Saber, and R. Glazer, "Development of energy ratings for insulated wall assemblies," 2009 Building Envelope Symposium, San Diego, CA, October 26-09, 2009. Google Scholar
13. Saber, H. H., W. Maref, A. H. Elmahdy, M. C. Swinton, and R. Glazer, "Energy rating of insulated wall assemblies," Construction Innovation, Vol. 15, No. 1, 2010. Google Scholar
14. ASTM 2006, ASTM C-1363, , , Standard test method for the thermal performance of building assemblies by means of a hot box apparatus, 2006 Annual Book of ASTM Standards 04.06:717-59, http://www.astm.org (accessed on 26 August 2016).
15. Madding, R., "Finding R-values of stud frame constructed houses with IR thermography," InfraMation 2008 Proceedings ITC, Vol. 126 A, 2008.
doi:10.2528/PIER12012702 Google Scholar
16. Riaz, M. M. and A. Ghafoor, "Principle component analysis and fuzzy logic based through wall image enhancement," Progress In Electromagnetics Research, Vol. 127, 461-478, 2012.
doi:10.2528/PIER11080907 Google Scholar
17. Zhu, F., et al. "Low-profile directional ultra-wideband antenna for see-through-wall imaging applications," Progress In Electromagnetics Research, Vol. 121, 121-139, 2011.
doi:10.3390/s130911969 Google Scholar
18. Kocur, D., M. Svecova, and J. Rovnakova, "Through-the-wall localization of a moving target by two independent UltraWideband (UWB) radar systems," Sensors, Vol. 13, 11969-11997, 2013.
doi:10.2528/PIER11052402 Google Scholar
19. Jia, Y., L. J. Kong, and X. B. Yang, "A novel approach to target localization through unknown walls for through-the-wall radar imaging," Progress In Electromagnetics Research, Vol. 119, 107-132, 2011.
doi:10.1016/j.measurement.2013.08.031 Google Scholar
20. Zhai, S. and T. Jiang, "Target detection and classification by measuring and processing bistatic UWB radar signal," Measurement, Vol. 47, 547-557, 2014.
doi:10.2528/PIER10020903 Google Scholar
21. Lu, T., K. Agarwal, Y. Zhong, and X. Chen, "Through-wall imaging: Application of subspace-based optimization method," Progress In Electromagnetics Research, Vol. 102, 351-366, 2010.
doi:10.5923/j.ijea.20110101.05 Google Scholar
22. Kumar, P. and T. Kumar, "UWB impulse radar for through-the-wall imaging," International Journal of Electromagnetics and Applications, Vol. 1, 19-23, 2011. Google Scholar
23. Adib, F. and D. Katabi, "See through walls with Wi-Fi!," ACM SIGCOMM’13, Hong Kong, August 2013. Google Scholar
24. Healy, W. M., "Detection of moisture accumulation in wall assemblies using ultra-wideband radio signals," Proceedings of Performance of Exterior Envelopes of Whole Building IX International Conference, December 5-10, Clearwater Beach, FL, 2004.
doi:10.1002/0470869194 Google Scholar
25. Oppermann, I., M. Hamalainen, and J. Linatti, UWB: Theory and Applications, 1st Ed., Wiley, 2004.
26. Time domain corporation, Comings Research Part, , , 330 Wynn Drive, Suite 300, Hantsville, Al 358.
27. Khodjet-Kesba, M., K. Chahine, K. Drissi, and K. Kerroum, "Comparison of ultra-wideband radar target classification methods based on complex natural resonances," PIERS Proceedings, Kuala Lumpur, Malaysia, March 27-30, 2012. Google Scholar
28. Reza, K. J., S. Khatun, F. Mohd, and M. N. Morshed, "Performance enhancement of UWB breast cancer imaging system: Proficient feature extraction and biomedical antenna approach," 2nd International Conference on Electronic Design, Penang, Malaysia, August 19-21, 2014. Google Scholar
29. Microwave Encyclopedia 2001-2016, , , Available on line: http://www.microwaves101.com/encyclopedias/miscellaneous-dielectric-constants/(accessed on 26 August 2016).
30. Wilson, R., "Propagation losses through common building materials: 2.4 GHz vs 5 GHz, reflection and transmission losses through common building materials," Technical Repo E10589, Magic Networks Inc., 2002.
doi:10.1007/s40518-014-0005-6 Google Scholar
31. Makul, N., P. Rattanadecho, and D. Agrawal, "Application of microwave energy in cement and concrete - A review," Renewable and Sustainable Energy Reviews, 2014. Google Scholar
32. Theodoridis, S. and K. Koutroumbas, Pattern Recognition, 4th Ed., Academic Press, 2008.
33. MATLAB and Neural Network Toolbox Release 2012b, TheMathWorks, Inc., , , Natick, Massachusetts, United States.