Vol. 52
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2016-11-29
Investigation of the Existence of Thermal Insulations in Wall Systems of Building Envelopes Using UWB Technique
By
Progress In Electromagnetics Research M, Vol. 52, 99-110, 2016
Abstract
Hybrid pattern recognition is used to predict the types of insulation materials used inside wall systems of building envelopes. The hybrid pattern recognition features vector is built using the characteristics of UWB signals. UWB signals can penetrate objects, resulting in scattered signals based on the object's dielectric properties. The object's dielectric properties and structure have a signature within the scattered signals. This paper demonstrates that proper hybrid pattern recognition can be used to experimentally detect the existence and the type of insulation material inside wall systems with a high success rate.
Citation
Saleh A. Alshehri , "Investigation of the Existence of Thermal Insulations in Wall Systems of Building Envelopes Using UWB Technique," Progress In Electromagnetics Research M, Vol. 52, 99-110, 2016.
doi:10.2528/PIERM16082802
http://www.jpier.org/PIERM/pier.php?paper=16082802
References

1. U.S. Energy Information Administration 2011-2012, , Available on line: http://www.eia.gov/todayinenergy/detail.cfm?id=10271/ (accessed on 26 August 2016).

2. Vrachopoulos, M. G., M. K. Koukou, D. G. Stavlas, V. N. Stamatopoulos, A. F. Gonidis, and E. D. Kravvaritis, "Testing reflective insulation for improvement of buildings energy efficiency," Central European Journal of Engineering, Vol. 2, 83-90, 2012.

3. Green Public Procurement Thermal Insulation Technical Background Report, , Report for the European Commission - DG Environment by AEA, Harwell, June 2010, Owner, Editor: European Commission, DG Environment-G2, B-1049, Brussels.
doi:10.1016/j.buildenv.2011.01.009

4. Saber, H. H., W. Maref, M. C. Swinton, and C. St-Onge, "Thermal analysis of above-grade wall assembly with low emissivity materials and furred-airspace," Journal of Building and Environment, Vol. 46, 1403-1414, 2011.
doi:10.1016/j.buildenv.2011.10.022

5. Saber, H. H., M. C. Swinton, P. Kalinger, and R. M. Paroli, "Long-term hygrothermal performance of white and black roofs in North American climates," Journal of Building and Environment, Vol. 50, 141-154, 2012.

6. Saber, H. H., M. C. Swinton, P. Kalinger, and R. M. Paroli, "Hygrothermal simulations of cool reflective and conventional roofs," Proceedings of the 2011 International Roofing Symposium, Washington, D.C., September 06-11, 2011.
doi:10.1177/1744259112444021

7. Saber, H. H., W. Maref, G. Sherrer, and M. C. Swinton, "Numerical modeling and experimental investigations of thermal performance of reflective insulations," Journal of Building Physics, Vol. 36, 163-177, 2012.
doi:10.1080/19401493.2010.532568

8. Saber, H. H., W. Maref, A. H. Elmahdy, M. C. Swinton, and R. Glazer, "3D heat and air transport model for predicting the thermal resistance of insulated wall assemblies," Journal of Building Performance Simulation, Vol. 5, 75-91, 2012.

9. Maref, W., H. H. Saber, R. Glazer, M. M. Armstrong, M. Nicholls, A. H. Elmahdy, and M. C. Swinton, "Energy performance of highly insulated wood-frame wall systems using a VIP," 10th International Vacuum Insulation Symposium, Ottawa, Ontario, September 15-11, 2011.

10. Saber, H. H., W. Maref, A. H. Elmahdy, M. C. Swinton, and R. Glazer, "3D thermal model for predicting the thermal resistance of spray polyurethane foam wall assemblies," 11th International Conference on Thermal Performance of the Exterior Envelopes of Whole Buildings XI, Clearwater, FL, USA, December 05-10, 2010.

11. Elmahdy, A. H., W. Maref, H. H. Saber, M. C. Swinton, and R. Glazer, "Assessment of the energy rating of insulated wall assemblies - A step towards building energy labeling," 10th International Conference for Enhanced Building Operation, Kuwait, October 26-10, 2010.

12. Elmahdy, A. H., W. Maref, M. C. Swinton, H. H. Saber, and R. Glazer, "Development of energy ratings for insulated wall assemblies," 2009 Building Envelope Symposium, San Diego, CA, October 26-09, 2009.

13. Saber, H. H., W. Maref, A. H. Elmahdy, M. C. Swinton, and R. Glazer, "Energy rating of insulated wall assemblies," Construction Innovation, Vol. 15, No. 1, 2010.

14. ASTM 2006, ASTM C-1363, , Standard test method for the thermal performance of building assemblies by means of a hot box apparatus, 2006 Annual Book of ASTM Standards 04.06:717-59, http://www.astm.org (accessed on 26 August 2016).

15. Madding, R., "Finding R-values of stud frame constructed houses with IR thermography," InfraMation 2008 Proceedings ITC, Vol. 126 A, 2008.
doi:10.2528/PIER12012702

16. Riaz, M. M. and A. Ghafoor, "Principle component analysis and fuzzy logic based through wall image enhancement," Progress In Electromagnetics Research, Vol. 127, 461-478, 2012.
doi:10.2528/PIER11080907

17. Zhu, F., et al., "Low-profile directional ultra-wideband antenna for see-through-wall imaging applications," Progress In Electromagnetics Research, Vol. 121, 121-139, 2011.
doi:10.3390/s130911969

18. Kocur, D., M. Svecova, and J. Rovnakova, "Through-the-wall localization of a moving target by two independent UltraWideband (UWB) radar systems," Sensors, Vol. 13, 11969-11997, 2013.
doi:10.2528/PIER11052402

19. Jia, Y., L. J. Kong, and X. B. Yang, "A novel approach to target localization through unknown walls for through-the-wall radar imaging," Progress In Electromagnetics Research, Vol. 119, 107-132, 2011.
doi:10.1016/j.measurement.2013.08.031

20. Zhai, S. and T. Jiang, "Target detection and classification by measuring and processing bistatic UWB radar signal," Measurement, Vol. 47, 547-557, 2014.
doi:10.2528/PIER10020903

21. Lu, T., K. Agarwal, Y. Zhong, and X. Chen, "Through-wall imaging: Application of subspace-based optimization method," Progress In Electromagnetics Research, Vol. 102, 351-366, 2010.
doi:10.5923/j.ijea.20110101.05

22. Kumar, P. and T. Kumar, "UWB impulse radar for through-the-wall imaging," International Journal of Electromagnetics and Applications, Vol. 1, 19-23, 2011.

23. Adib, F. and D. Katabi, "See through walls with Wi-Fi!," ACM SIGCOMM’13, Hong Kong, August 2013.

24. Healy, W. M., "Detection of moisture accumulation in wall assemblies using ultra-wideband radio signals," Proceedings of Performance of Exterior Envelopes of Whole Building IX International Conference, December 5-10, Clearwater Beach, FL, 2004.
doi:10.1002/0470869194

25. Oppermann, I., M. Hamalainen, and J. Linatti, UWB: Theory and Applications, 1st Ed., Wiley, 2004.

26. Time domain corporation, Comings Research Part, , 330 Wynn Drive, Suite 300, Hantsville, Al 358.

27. Khodjet-Kesba, M., K. Chahine, K. Drissi, and K. Kerroum, "Comparison of ultra-wideband radar target classification methods based on complex natural resonances," PIERS Proceedings, Kuala Lumpur, Malaysia, March 27-30, 2012.

28. Reza, K. J., S. Khatun, F. Mohd, and M. N. Morshed, "Performance enhancement of UWB breast cancer imaging system: Proficient feature extraction and biomedical antenna approach," 2nd International Conference on Electronic Design, Penang, Malaysia, August 19-21, 2014.

29. Microwave Encyclopedia 2001-2016, , Available on line: http://www.microwaves101.com/encyclopedias/miscellaneous-dielectric-constants/(accessed on 26 August 2016).

30. Wilson, R., "Propagation losses through common building materials: 2.4 GHz vs 5 GHz, reflection and transmission losses through common building materials," Technical Repo E10589, Magic Networks Inc., 2002.
doi:10.1007/s40518-014-0005-6

31. Makul, N., P. Rattanadecho, and D. Agrawal, "Application of microwave energy in cement and concrete - A review," Renewable and Sustainable Energy Reviews, 2014.

32. Theodoridis, S. and K. Koutroumbas, Pattern Recognition, 4th Ed., Academic Press, 2008.

33. MATLAB and Neural Network Toolbox Release 2012b, TheMathWorks, Inc., , Natick, Massachusetts, United States.