Vol. 70
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-11-25
Enhancing the Resolution of Hyperlens by the Compensation of Losses Without Gain Media
By
Progress In Electromagnetics Research C, Vol. 70, 1-7, 2016
Abstract
We present a method to improve the resolution of available hyperlenses in the literature. In this method, we combine the operation of hyperlens with the recently proposed plasmon injection scheme for loss compensation in metamaterials. Image of an object, which is otherwise not resolvable by the hyperlens alone, was reconstructed up to the minimum feature size of one seventh of the free-space wavelength.
Citation
Xu Zhang, Wyatt Adams, Mehdi Sadatgol, and Durdu Oe Guney, "Enhancing the Resolution of Hyperlens by the Compensation of Losses Without Gain Media," Progress In Electromagnetics Research C, Vol. 70, 1-7, 2016.
doi:10.2528/PIERC16083105
References

1. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966, 2000.
doi:10.1103/PhysRevLett.85.3966

2. Smith, D. R., D. Schurig, M. Rosenbluth, and S. Schultz, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett., Vol. 82, 1506, 2003.
doi:10.1063/1.1554779

3. Zhang, X. and Z. Liu, "Superlenses to overcome the diffraction limit," Nature Mater., Vol. 7, 435, 2008.
doi:10.1038/nmat2141

4. Fang, N., H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science, Vol. 308, 534, 2005.
doi:10.1126/science.1108759

5. Jacob, Z., L. V. Alekseyev, and E. E. Narimanov, "Optical hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express, Vol. 14, 8247, 2006.
doi:10.1364/OE.14.008247

6. Wood, B. and J. B. Pendry, "Directed sub-wavelength imaging using a layered metal-dielectric system," Phys. Rev. B, Vol. 74, 115116, 2006.
doi:10.1103/PhysRevB.74.115116

7. Liu, Z., H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying subdiffraction- limited objects," Science, Vol. 315, 1686, 2007.
doi:10.1126/science.1137368

8. Rho, J., Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, "Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies," Nature Commun., Vol. 1, 143, 2010.
doi:10.1038/ncomms1148

9. Sun, J., M. Shalaev, and N. Litchinitster, "Experimental demonstration of a non-resonant hyperlens in the visible spectral range," Nature Commun., Vol. 6, 7201, 2015.
doi:10.1038/ncomms8201

10. Gwamuri, J., D. O. Guney, and J. M. Pearce, "Advances in plasmonic light trapping in thin-film solar photovoltaic devices," Solar Cell Nanotechnology, A. Tiwari, R. Boukherroub, and M. Sharon, eds., 243–270, Wiley, Beverly, 2013.

11. Aydin, K., V. E. Ferry, R. M. Briggs, and H. A. Atwater, "Broadband polarization-independent resonant light absorption using plasmonic super absorbers," Nat. Commun., Vol. 2, 517, 2011.
doi:10.1038/ncomms1528

12. Temnov, V. V., "Ultrafast acousto-magneto-plasmonics," Nat. Photonics, Vol. 6, 728, 2012.
doi:10.1038/nphoton.2012.220

13. Aslam, M. I. and D. O. Guney, "On negative index metamaterial spacers and their unusual optical properties," Progress In Electromagnetics Research B, Vol. 47, 203, 2013.
doi:10.2528/PIERB12111908

14. Sadatgol, M., M. Rahman, E. Forati, M. Levy, and D. O. Guney, "Enhanced Faraday rotation in hybrid magneto-optical metamaterial structure of bismuth-substituted-iron-garnet embedded-goldwires," J. Appl. Phys., Vol. 119, 103105, 2016.
doi:10.1063/1.4943651

15. Abbe, E., "Beitrage zur theorie des mikroskops und der mikroskopischen wahrnehmung," Arch. F. Mikr. Anat., Vol. 9, 413-420, 1873.
doi:10.1007/BF02956173

16. Poddubny, A., I. Iorsh, P. Belov, and Y. Kivshar, "Hyberbolic metamaterials," Nat. Photonics, Vol. 7, 948, 2013.
doi:10.1038/nphoton.2013.243

17. Zhang, X., S. Debnath, and D. O. Guney, "Hyperbolic metamaterial feasible for fabrication with direct laser writing processes," J. Opt. Soc. Am. B, Vol. 32, 1013, 2015.
doi:10.1364/JOSAB.32.001013

18. Guney, D. O., Th. Koschny, and C. M. Soukoulis, "Reducing ohmic losses in metamterials by geometric tailoring," Phys. Rev. B, Vol. 80, 125129, 2009.
doi:10.1103/PhysRevB.80.125129

19. Lee, H., Z. Liu, Y. Xiong, C. Sun, and X. Zhang, "Development of optical hyperlens for imaging below the diffraction limit," Opt. Express, Vol. 15, 15886, 2007.
doi:10.1364/OE.15.015886

20. Guney, D. O., Th. Koschny, and C. M. Soukoulis, "Surface plasmon driven electric and magnetic resonators for metamaterials," Phys. Rev. B, Vol. 83, 045107, 2011.
doi:10.1103/PhysRevB.83.045107

21. Aslam, M. I. and D. O. Guney, "Surface plasmon driven scalable low-loss negative-index metamaterial in the visible spectrum," Phys. Rev. B, Vol. 84, 195465, 2011.
doi:10.1103/PhysRevB.84.195465

22. Sadatgol, M., S. K. Ozdemir, L. Yang, and 9D. O. Guney, "Plasmon injection to compensate and control losses in negative index metamaterials," Phys. Rev. Lett., Vol. 115, 35502, 2015.
doi:10.1103/PhysRevLett.115.035502

23. Xiao, S., V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, "Loss-free and active optical negative-index metamaterials," Nature, Vol. 466, 735, 2010.
doi:10.1038/nature09278

24. Stockman, M. I., "Spaser action, loss compensation, and stability in plasmonic systems with gain," Phys. Rev. Lett., Vol. 106, 156802, 2011.
doi:10.1103/PhysRevLett.106.156802

25. Adams, W., M. Sadatgol, X. Zhang, and D. O. Guney, "Bringing the ‘perfect lens’ into focus by near-perfect compensation of losses without gain media,", arXiv: 1607.07464.

26. Chen, Y., Y.-C. Hsueh, M. Man, and K. J. Webb, "Enhanced and tunable resolution from an imperfect negative refractive index lens," J. Opt. Soc. Am. B, Vol. 33, 445, 2016.
doi:10.1364/JOSAB.33.000445

27. Johnson, P. B. and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, 4370, 1972.
doi:10.1103/PhysRevB.6.4370

28. Palik, E. D., Handbook of Optical Constants of Solids III, Academic Press, 1998.

29. Taubner, T., D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-field microscopy through a SiC superlens," Science, Vol. 313, 1595, 2006.
doi:10.1126/science.1131025

30. Fienup, J. R., "Phase retrieval algorithms: A comparison," Appl. Opt., Vol. 21, 2758, 1982.
doi:10.1364/AO.21.002758