1. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966, 2000.
doi:10.1103/PhysRevLett.85.3966 Google Scholar
2. Smith, D. R., D. Schurig, M. Rosenbluth, and S. Schultz, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett., Vol. 82, 1506, 2003.
doi:10.1063/1.1554779 Google Scholar
3. Zhang, X. and Z. Liu, "Superlenses to overcome the diffraction limit," Nature Mater., Vol. 7, 435, 2008.
doi:10.1038/nmat2141 Google Scholar
4. Fang, N., H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science, Vol. 308, 534, 2005.
doi:10.1126/science.1108759 Google Scholar
5. Jacob, Z., L. V. Alekseyev, and E. E. Narimanov, "Optical hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express, Vol. 14, 8247, 2006.
doi:10.1364/OE.14.008247 Google Scholar
6. Wood, B. and J. B. Pendry, "Directed sub-wavelength imaging using a layered metal-dielectric system," Phys. Rev. B, Vol. 74, 115116, 2006.
doi:10.1103/PhysRevB.74.115116 Google Scholar
7. Liu, Z., H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying subdiffraction- limited objects," Science, Vol. 315, 1686, 2007.
doi:10.1126/science.1137368 Google Scholar
8. Rho, J., Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, "Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies," Nature Commun., Vol. 1, 143, 2010.
doi:10.1038/ncomms1148 Google Scholar
9. Sun, J., M. Shalaev, and N. Litchinitster, "Experimental demonstration of a non-resonant hyperlens in the visible spectral range," Nature Commun., Vol. 6, 7201, 2015.
doi:10.1038/ncomms8201 Google Scholar
10. Gwamuri, J., D. O. Guney, and J. M. Pearce, "Advances in plasmonic light trapping in thin-film solar photovoltaic devices," Solar Cell Nanotechnology, A. Tiwari, R. Boukherroub, and M. Sharon, eds., 243–270, Wiley, Beverly, 2013. Google Scholar
11. Aydin, K., V. E. Ferry, R. M. Briggs, and H. A. Atwater, "Broadband polarization-independent resonant light absorption using plasmonic super absorbers," Nat. Commun., Vol. 2, 517, 2011.
doi:10.1038/ncomms1528 Google Scholar
12. Temnov, V. V., "Ultrafast acousto-magneto-plasmonics," Nat. Photonics, Vol. 6, 728, 2012.
doi:10.1038/nphoton.2012.220 Google Scholar
13. Aslam, M. I. and D. O. Guney, "On negative index metamaterial spacers and their unusual optical properties," Progress In Electromagnetics Research B, Vol. 47, 203, 2013.
doi:10.2528/PIERB12111908 Google Scholar
14. Sadatgol, M., M. Rahman, E. Forati, M. Levy, and D. O. Guney, "Enhanced Faraday rotation in hybrid magneto-optical metamaterial structure of bismuth-substituted-iron-garnet embedded-goldwires," J. Appl. Phys., Vol. 119, 103105, 2016.
doi:10.1063/1.4943651 Google Scholar
15. Abbe, E., "Beitrage zur theorie des mikroskops und der mikroskopischen wahrnehmung," Arch. F. Mikr. Anat., Vol. 9, 413-420, 1873.
doi:10.1007/BF02956173 Google Scholar
16. Poddubny, A., I. Iorsh, P. Belov, and Y. Kivshar, "Hyberbolic metamaterials," Nat. Photonics, Vol. 7, 948, 2013.
doi:10.1038/nphoton.2013.243 Google Scholar
17. Zhang, X., S. Debnath, and D. O. Guney, "Hyperbolic metamaterial feasible for fabrication with direct laser writing processes," J. Opt. Soc. Am. B, Vol. 32, 1013, 2015.
doi:10.1364/JOSAB.32.001013 Google Scholar
18. Guney, D. O., Th. Koschny, and C. M. Soukoulis, "Reducing ohmic losses in metamterials by geometric tailoring," Phys. Rev. B, Vol. 80, 125129, 2009.
doi:10.1103/PhysRevB.80.125129 Google Scholar
19. Lee, H., Z. Liu, Y. Xiong, C. Sun, and X. Zhang, "Development of optical hyperlens for imaging below the diffraction limit," Opt. Express, Vol. 15, 15886, 2007.
doi:10.1364/OE.15.015886 Google Scholar
20. Guney, D. O., Th. Koschny, and C. M. Soukoulis, "Surface plasmon driven electric and magnetic resonators for metamaterials," Phys. Rev. B, Vol. 83, 045107, 2011.
doi:10.1103/PhysRevB.83.045107 Google Scholar
21. Aslam, M. I. and D. O. Guney, "Surface plasmon driven scalable low-loss negative-index metamaterial in the visible spectrum," Phys. Rev. B, Vol. 84, 195465, 2011.
doi:10.1103/PhysRevB.84.195465 Google Scholar
22. Sadatgol, M., S. K. Ozdemir, L. Yang, and 9D. O. Guney, "Plasmon injection to compensate and control losses in negative index metamaterials," Phys. Rev. Lett., Vol. 115, 35502, 2015.
doi:10.1103/PhysRevLett.115.035502 Google Scholar
23. Xiao, S., V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, "Loss-free and active optical negative-index metamaterials," Nature, Vol. 466, 735, 2010.
doi:10.1038/nature09278 Google Scholar
24. Stockman, M. I., "Spaser action, loss compensation, and stability in plasmonic systems with gain," Phys. Rev. Lett., Vol. 106, 156802, 2011.
doi:10.1103/PhysRevLett.106.156802 Google Scholar
25. Adams, W., M. Sadatgol, X. Zhang, and D. O. Guney, "Bringing the ‘perfect lens’ into focus by near-perfect compensation of losses without gain media,", arXiv: 1607.07464. Google Scholar
26. Chen, Y., Y.-C. Hsueh, M. Man, and K. J. Webb, "Enhanced and tunable resolution from an imperfect negative refractive index lens," J. Opt. Soc. Am. B, Vol. 33, 445, 2016.
doi:10.1364/JOSAB.33.000445 Google Scholar
27. Johnson, P. B. and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, 4370, 1972.
doi:10.1103/PhysRevB.6.4370 Google Scholar
28. Palik, E. D., Handbook of Optical Constants of Solids III, Academic Press, 1998.
29. Taubner, T., D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, "Near-field microscopy through a SiC superlens," Science, Vol. 313, 1595, 2006.
doi:10.1126/science.1131025 Google Scholar
30. Fienup, J. R., "Phase retrieval algorithms: A comparison," Appl. Opt., Vol. 21, 2758, 1982.
doi:10.1364/AO.21.002758 Google Scholar