Vol. 69
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2016-12-01
Artificial Electromagnetic Characteristics Analysis in Hyperbolic Metamaterials Slot Waveguides Based on Graphene
By
Progress In Electromagnetics Research C, Vol. 69, 199-207, 2016
Abstract
In this paper, hyperbolic metamaterials slot waveguides based on graphene have been proposed to explore the optical characteristics. The hyperbolic metamaterials are composed of graphene-dielectric alternating multilayer. It has been verified in our proposed structure that the optical field is enhanced efficiently in the slot region, which results in the optical gradient force becoming larger as the distance of slot region becomes smaller. Both numerical simulation and theoretical analysis systematically reveal that the stronger gradient force can be achieved through smaller slot gap or lower chemical potential. Furthermore, the optical properties of two coupled waveguides have been studied under the relation of incident wavelength, chemical potential of graphene, composition of graphene-dielectric multilayer (eg., number of periods, filling factor of graphene) of the waveguides in this work. We find that a larger gradient force can be obtained by adjusting the height of waveguides, either decreasing the thickness of dielectric with constant number of periods or compressing the number of periods with fixed graphene filling factor. Our results will be helpful to the study of the optical field in the infrared region and also has great potentials in nanoscale manipulation and plasmonic devices.
Citation
Xu Li, Lin Cheng, Mingrui Yuan, Pengfei Cao, Xiaodong He, and Xiaoping Zhang, "Artificial Electromagnetic Characteristics Analysis in Hyperbolic Metamaterials Slot Waveguides Based on Graphene," Progress In Electromagnetics Research C, Vol. 69, 199-207, 2016.
doi:10.2528/PIERC16093001
References

1. Barnakov, Y. A., H. Li, E. E. Narimanov, M. A. Noginov, T. Tumkur, and G. Zhu, "Bulk photonic metamaterial with hyperbolic dispersion," Applied Physics Letters, Vol. 94, No. 15, 151105-151105-3, 2008.

2. Yao, J., Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, "Optical negative refraction in bulk metamaterials of nanowires," Science, Vol. 321, No. 5891, 930, 2008.
doi:10.1126/science.1157566

3. Wood, B., J. B. Pendry, and D. P. Tsai, "Directed sub-wavelength imaging using a layered metaldielectric system," Physics, 2006, doi:10.1103/PhysRevB.74.1151163.

4. Jacob, Z., J. Y. Kim, G. V. Naik, A. Boltasseva, E. E. Narimanov, and V. M. Shalaev, "Engineering photonic density of states using metamaterials," Applied Physics B, Vol. 100, No. 1, 215-218, 2010.
doi:10.1007/s00340-010-4096-5

5. Mei, Z. L., Y. L. Xu, J. Bai, and T. J. Cui, "Nonmagnetic electromagnetic transparent wall realized by a metal-dielectric multilayer structure," Optics Express, Vol. 20, No. 15, 16955-16967, 2012.
doi:10.1364/OE.20.016955

6. Starkobowes, R., J. Atkinson, W. Newman, H. Hu, T. Kallos, G. Palikaras, R. Fedosejevs, S. Pramanik, and Z. Jacob, "Optical characterization of epsilon-near-zero, epsilon-near-pole, and hyperbolic response in nanowire metamaterials," Journal of the Optical Society of America B, Vol. 32, No. 10, 2015.

7. Cui, J. P., W. S. Zhao, W. Y. Yin, and J. Hu, "Signal transmission analysis of multilayer graphene nanoribbon (MLGNR) interconnects," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, No. 1, 126-132, 2012.
doi:10.1109/TEMC.2011.2172947

8. Fei, Z., A. S. Rodin, G. O. Andreev, and W. Bao, "Gate-tuning of graphene plasmons revealed by infrared nano-imaging," Nature, Vol. 487, No. 7405, 82-85, 2012.

9. Liu, H., Y. Liu, and D. Zhu, "Chemical doping of graphene," Journal of Materials Chemistry, Vol. 21, No. 10, 3335-3345, 2011.
doi:10.1039/C0JM02922J

10. Guo, B., L. Fang, B. Zhang, and J. R. Gong, "Graphene doping: A review," Sciences Journal, Vol. 1, No. 2, 80-89, 2011.

11. Ballestar, A., P. Esquinazi, J. Barzola-Quiquia, S. Dusari, F. Bern, R. R. D. Silva, et al. "Possible superconductivity in multi-layer-graphene by application of a gate voltage," Carbon, Vol. 72, No. 2, 312-320, 2014.
doi:10.1016/j.carbon.2014.02.011

12. Ju, L., B. Geng, L. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, and Y. R. Shen, "Graphene plasmonics for tunable terahertz metamaterials," Nature Nanotechnology, Vol. 6, No. 10, 630-634, 2011.
doi:10.1038/nnano.2011.146

13. Zhu, B., G. Ren, Y. Gao, Y. Yang, B.Wu, Y. Lian, and S. Jian, "Local field enhancement in infrared graphene-dielectric hyperbolic slot waveguies," IEEE Photonic Technology Letters, Vol. 27, No. 3, 276-279, 2015.
doi:10.1109/LPT.2014.2368192

14. Yang, X., Y. Liu, R. F. Oulton, X. Yin, and X. Zhang, "Optical forces in hybird plasmonic waveguides," Nano Letter., Vol. 11, No. 2, 321-328, 2011.
doi:10.1021/nl103070n

15. Ginis, V., P. Tassin, C. M. Soukoulis, and I. Veretennicoff, "Enhancing optical gradient forces with metamaterials," Physical Review Letter, Vol. 110, No. 5, 66-71, 2013.
doi:10.1103/PhysRevLett.110.057401

16. He, Y., S. He, J. Gao, and X. Yang, "Giant transverse optical forces in nanoscale slot waveguides of hyperbolic metamaterials," Optics Express, Vol. 20, No. 20, 22372-22382, 2012.
doi:10.1364/OE.20.022372

17. Zhao, Q., C. Guclu, Y. Huang, F. Capolino, and O. Boyraz, "Silicon nitride waveguides for plasmon optical trapping and sensing applications," Physics, 2015.

18. Yang, A. H. J., S. D. Moore, B. S. Schmidet, M. Klug, M. Lipson, and D. Erickson, "Optical manipulation of nanoparticle biomolecules in sub-wavelength slot waveguides," Nature, Vol. 457, No. 7225, 71-75, 2009.
doi:10.1038/nature07593

19. Zhang, T., L. Chen, and X. Li, "Graphene-based tunable broadband hyperlens for far-field subdiffraction imaging at mid-infrared frequencies," Optics Express, Vol. 21, No. 18, 20888-20899, 2013.
doi:10.1364/OE.21.020888

20. Wang, B., X. Zhang, X. Yuan, and J. Teng, "Optical coupling of surface plasmons between graphene sheets," Applied physics Letter, Vol. 100, No. 13, 131111-131114, 2012.
doi:10.1063/1.3698133

21. Sun, Y., Z. Zheng, J. Cheng, G. Sun, and G. Qiao, "Highly efficient second harmonic generation in hyperbolic metamaterials slot waveguides with large phase matching tolerance," Optics Express, Vol. 23, No. 5, 6370-6378, 2015.
doi:10.1364/OE.23.006370

22. Shekhar, P., J. Atkinson, and Z. Jacob, "Hyperbolic metamaterials: fundamentals and apllications," Physics, Vol. 1, No. 1, 1-17, 2014.

23. He, Y., S. He, and X. Yang, "Optical field enhancement in nanoscale slot waveguides of hyperbolic metamaterials," Optics Letters, Vol. 37, No. 14, 2907-2909, 2012.
doi:10.1364/OL.37.002907

24. Almeida, V. R., Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confing light in void nanostructure," Optics Letters, Vol. 29, No. 11, 1209-1211, 2004.
doi:10.1364/OL.29.001209

25. Novotny, L., B. Hecht, and O. Keller, Principles of Nano-optics, Vol. 60, No. 7, 41, Cambridge University Press, 2012.
doi:10.1017/CBO9780511794193

26. Esteban, R., A. G. Borisov, P. Nordlander, and J. Aizpurua, "Bridging quantum and classical plasmonics with a quantum-corrected model," Nature Communications, Vol. 3, No. 3, 199-202, 2012.

27. Marinica, D. C., A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, "Quantum plasmonics: nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer," Nano Letters, Vol. 12, No. 3, 1333-9, 2012.
doi:10.1021/nl300269c

28. Teperik, T. V., P. Nordlander, J. Aizpurua, and A. G. Borisov, "Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers," Optics Express, Vol. 21, No. 22, 27306-25, 2013.
doi:10.1364/OE.21.027306

29. Thongrattanasiri, S., A. Manjavacas, and F. J. G. D. Abajo, "Quantum finite-size effects in graphene plasmons," Acs Nano, Vol. 6, No. 2, 1766-75, 2012.
doi:10.1021/nn204780e