Vol. 53
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-01-13
Rectangular Wave Beam Based GO/PO Method for RCS Simulation of Complex Target
By
Progress In Electromagnetics Research M, Vol. 53, 53-65, 2017
Abstract
The rectangular wave beams-based geometrical optics (GO) and physical optics (PO) hybrid method is applied to the radar cross section (RCS) simulation of complex target. In the implementation process, the incident wave beam is divided into plenty of regular rectangular wave beams. The RCS of target is subsequently harvested from the sum of the contributions from rectangular wave beams. And Open Graphics Library (OpenGL) is used to accelerate ray tracing for the GO/PO method. Here, each pixel corresponds to a rectangular wave beam, which improves the defect that the pixel number should be larger than the patch number on the model and the efficiency in the general OpenGL based GO/PO method. In addition, the patch size in the presented method can be arbitrary as long as the model is described accurately with these patches. The simulation results prove this point and show that the proposed rectangular wave beam-based GO/PO method is feasible and can keep a high calculation accuracy and efficiency with a low pixel number.
Citation
Wang-Qiang Jiang, Min Zhang, Ding Nie, and Yong-Chang Jiao, "Rectangular Wave Beam Based GO/PO Method for RCS Simulation of Complex Target," Progress In Electromagnetics Research M, Vol. 53, 53-65, 2017.
doi:10.2528/PIERM16102401
References

1. Delgado, C., E. Garcia, J. Moreno, I. Gonzalez-Diego, and M. F. Catedra, "An overview of the evolution of method of moments techniques in modern EM simulators (invited paper)," Progress In Electromagnetics Research, Vol. 150, 109-121, 2015.
doi:10.2528/PIER14121603

2. Guillod, T., F. Kehl, and C. V. Hafner, "FEM-based method for the simulation of dielectric waveguide grating biosensors," Progress In Electromagnetics Research, Vol. 137, 565-583, 2013.
doi:10.2528/PIER13020502

3. Balanis, C. A., Advanced Engineering Electromagnetics, Wiley, 1989.

4. Knott, E. F., "RCS reduction of dihedral corners," IEEE Trans. Antennas Propag., Vol. 25, No. 3, 406-409, 1977.
doi:10.1109/TAP.1977.1141586

5. Yan, J., J. Hu, and Z. Nie, "Calculation of the physical optics scattering by trimmed NURBS surfaces," IEEE Antennas Wireless Propag. Lett., Vol. 13, 1640-1643, 2014.
doi:10.1109/LAWP.2014.2348564

6. Kim, J. H., et al. "Analysis of FSS radomes based on physical optics method and ray tracing technique," IEEE Antennas Wireless Propag. Lett., Vol. 13, 868-871, 2014.

7. Ufimtsev, P. Y., Fundamentals of the Physical Theory of Diffraction, Wiley, 2007.
doi:10.1002/0470109017

8. Tsang, L., et al. Scattering of Electromagnetic Waves (Vol. 2: Numerical Simulations), Viely, 2001.
doi:10.1002/0471224308

9. Bucci, O. M., T. Isernia, and A. F. Morabito, "Optimal synthesis of circularly symmetric shaped beams," IEEE Trans. Antennas Propag., Vol. 62, No. 4, 1954-1964, 2014.
doi:10.1109/TAP.2014.2302842

10. Tao, Y. B., H. Lin, and H. J. Bao, "Kd-tree based fast ray tracing for RCS prediction," Progress In Electromagnetics Research, Vol. 81, 329-341, 2008.
doi:10.2528/PIER08011305

11. Tao, Y., H. Lin, and H. Bao, "GPU-based shooting and bouncing ray method for fast RCS prediction," IEEE Trans. Antennas Propag., Vol. 58, No. 2, 494-502, 2010.
doi:10.1109/TAP.2009.2037694

12. Ling, H., R. C. Chow, and S. W. Lee, "Shooting and bouncing rays: Calculating the RCS of an arbitrarily shaped cavity," IEEE Trans. Antennas Propag., Vol. 37, No. 2, 194-205, 1989.
doi:10.1109/8.18706

13. Wei, P. B., et al. "GPU-based combination of GO and PO for electromagnetic scattering from satellite," IEEE Trans. Antennas Propag., Vol. 60, No. 11, 5278-5285, 2012.
doi:10.1109/TAP.2012.2207679

14. Fan, T. Q. and L. X. Guo, "OpenGL-based hybrid GO/PO computation for RCS of electrically large complex objects," IEEE Antennas Wireless Propag. Lett., Vol. 13, 666-669, 2014.

15. Sundararajan, P. and M. Y. Niamat, "FPGA implementation of the ray tracing algorithm used in the Xpatch software," Proc. IEEE MWSCAS'01, Vol. 1, 446-449, Dayton, OH, Aug. 2001.

16. Jin, K.-S., T. Suh, S.-H. Suk, and H.-T. Kim, "Fast ray tracing using a space-division algorithm for RCS prediction," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 119-126, Jan. 2006.
doi:10.1163/156939306775777341

17. Rius, J. M., M. Ferrando, and L. Jofre, "GRECO: Graphical electromagnetic computing for RCS prediction in real time," IEEE Antennas Propag. Mag., Vol. 35, No. 2, 7-17, 1993.
doi:10.1109/74.207645

18. Youssef, N. N., "Radar cross section of complex targets," Proc. of the IEEE, Vol. 77, 722-734, 1989.
doi:10.1109/5.32062