1. Oualli, H., M. Mekadem, M. Lebbi, and A. Bouabdallah, "Taylor-Couette flow control by amplitude variation of the inner cylinder cross-section oscillation," Eur. Phys. J. Appl. Phys., Vol. 71, 11102, 2015.
doi:10.1051/epjap/2015140232 Google Scholar
2. Albrecht, T., J. Stiller, H. Metzkes, T. Weier, and G. Gerbeth, "Electromagnetic flow control in poor conductors," Eur. Phys. J. Special Topics, 220-275, 2013. Google Scholar
3. Berger, T. W., J. Kim, C. Lee, and J. Lim, "Turbulent boundary layer control utilizing the Lorentz force," Physics of Fluids, Vol. 12, No. 3, 631-649, March 2000.
doi:10.1063/1.870270 Google Scholar
4. Weier, T., U. Fey, G. Gerbeth, G. Mutschke, O. Lielausis, and E. Platacis, "Boundary layer control by means of wall parallel Lorentz forces," Magnetohydrodynamics, Vol. 37, No. 1-2, 177-186, 2001. Google Scholar
5. Hinze, M., "Control of weakly conductive fluids by near wall Lorentz forces," GAMM-Mitt, Vol. 30, No. 1, 149-158, 2007.
doi:10.1002/gamm.200790004 Google Scholar
6. Thibault, J.-P. and L. Rossi, "Electromagnetic flow control: Characteristic numbers and flow regimes of a wall-normal actuator," J. Phys. D: Appl. Phys., Vol. 36, No. 1, 2003. Google Scholar
7. Taylor, G. I., "Stability of viscous liquid contained between two rotating cylinders," Phil. Trans. R. Soc. Lond. A, Vol. 223, 289-343, 1923.
doi:10.1098/rsta.1923.0008 Google Scholar
8. Menana, H., J. F. Charpentier, and C. Gabillet, "Contribution to the MHD modeling in low speed radial flux AC machines with air-gaps filled with conductive fluids," IEEE Trans. Mag., Vol. 50, No. 1, 1-4, Vol. 8100104, January 2014.
doi:10.1109/TMAG.2013.2281421 Google Scholar
9. White, M. F., Fluid Mechanics, 4th Ed., McGraw-Hill, Inc., 1995.
10. Dou, H.-S., B. C. Khoo, and K. S. Yeo, "Energy loss distribution in the plane couette flow and the Taylor-Couette flow between concentric rotating cylinders," Inter. J. of Therm. Sci., Vol. 46, 262-275, 2007.
doi:10.1016/j.ijthermalsci.2006.05.003 Google Scholar