Vol. 56
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-05-16
Design of Ultrathin Absorptive/Transmissive Radome with Dual Passbands
By
Progress In Electromagnetics Research M, Vol. 56, 197-205, 2017
Abstract
An ultrathin absorptive/transmissive radome with dual passbands is presented in this paper. The total thickness of radome is only 5 mm. The dual passbands are located at around 1.05 GHz and 2.2 GHz, respectively. The absorbing band ranges from 6.28 GHz to 15.04 GHz for TE wave incidence and from 6.3 GHz to 15.16 GHz for TM wave incidence. Due to the miniaturized elements, the grating lobes are shifted out of absorbing band to higher frequency. Both numerical and experimental results are also given out.
Citation
Bo Yi Peiguo Liu Gaosheng Li , "Design of Ultrathin Absorptive/Transmissive Radome with Dual Passbands," Progress In Electromagnetics Research M, Vol. 56, 197-205, 2017.
doi:10.2528/PIERM17021102
http://www.jpier.org/PIERM/pier.php?paper=17021102
References

1. Costa, F. and A. Monorchio, "A frequency selective raome with wideband absorbing properties," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 6, 2740-2747, 2012.
doi:10.1109/TAP.2012.2194640

2. Liu, L., et al., "Design of an invisible radome by frequency selective surface loaded with lumped resistors," Chin. Phys. Lett., Vol. 30, No. 6, 064101, 2013.
doi:10.1088/0256-307X/30/6/064101

3. Arceneaux, W. S., R. D. Akins, and W. B. May, "Absorptive/transmissive radome,", US Patent 5,400,043, 1995.

4. Zhou, H., et al., "Experimental demonstration of an absorptive/transmissive FSS with magnetic material," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 114-117, 2014.
doi:10.1109/LAWP.2013.2296992

5. Chen, Q. and Y. Fu, "A planar stealthy antenna radome using absorptive frequency selective surface," Microwave and Optical Technology Letters, Vol. 56, No. 8, 1788-1792, 2014.
doi:10.1002/mop.28442

6. Chen, Q., J. Bai, L. Chen, and Y. Fu, "A miniaturized absorptive frequency selective surface," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 80-83, 2015.
doi:10.1109/LAWP.2014.2355252

7. Chen, Q., L. Chen, J. Bai, and Y. Fui, "Design of absorptive frequency selective surface with good transmission at high frequency," Electronics Letters, Vol. 51, 885-886, 2015.
doi:10.1049/el.2015.0228

8. Chen, Q., L. Liu, L. Chen, J. Bai, and Y. Fu, "Absorptive frequency selective surface using parallel LC resonance," Electronics Letters, Vol. 52, 418-419, 2016.
doi:10.1049/el.2015.3885

9. Yi, B., L. Yang, and P. Liu, "Design of miniaturized and ultrathin absorptive/transmissive radome based on interdigital square loops," Progress In Electromagnetic Research Letters, Vol. 62, 117-123, 2016.
doi:10.2528/PIERL16080201

10. Kartal, M. and B. Doken, "A new frequency selective absorber surface at the unlicensed 2.4-GHz ISM band," Microwave and Optical Technology Letters, Vol. 58, No. 10, 2351-2358, 2016.
doi:10.1002/mop.30045

11. Munk, Frequency Selective Surface: Theory and Design, Wiley, New York, 2000.
doi:10.1002/0471723770

12. Liu, H. L., K. L. Ford, and R. J. Langley, "Design methodology for a miniaturized frequency selective surface using lumped reactive components," IEEE Transactions on Antennas and Propagation, Vol. 57, 2732-2738, 2009.
doi:10.1109/TAP.2009.2027174

13. Liu, H. L., K. L. Ford, and R. J. Langley, "Miniaturized bandpass frequency selective surface with lumped components," Electronics Letters, Vol. 44, 1-2, 2008.

14. Xu, R. R., H. C. Zhao, Z. Y. Zong, and W. Wu, "Dual-band capacitive loaded frequency selective surfaces with close band spacing," IEEE Microwave and Wireless Components Letters, Vol. 18, 782-784, 2008.
doi:10.1109/LMWC.2008.2007697

15. Ebrahimi, A., W. Withayachumnankul, S. Al-Sarawi, and D. Abbott, "Design of dual band frequency selective surface with miniaturized elements," The 2014 International Workshop on Antenna Technology, 201-204, 2014.

16. Han, Y., W. Che, and Y. Chang, "Investigation of thin and broadband capacitive surface based absorbers by the impedance analysis method," IEEE Transactions on Electromagnetic Compatibility, Vol. 57, No. 1, 22-26, 2015.
doi:10.1109/TEMC.2014.2358686