Vol. 57
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-06-12
Adaptive Sharp Boundary Inversion for Transient Electromagnetic Data
By
Progress In Electromagnetics Research M, Vol. 57, 129-138, 2017
Abstract
An adaptive sharp boundary inversion scheme is developed to improve resolution with feasibility for transient electromagnetic (TEM) data inversion. By using weighted minimum gradient support (WMGS) constraint, this method focuses the resistivity change areas on layer boundary locations. Prior information describing roughness can be added into the constraint to improve resolution. Furthermore, even though no prior information about layer boundaries is available, it can still reconstruct models with geo-electrical interfaces. Synthetic models prove that this method has a better performance in presenting layer boundaries than smooth-model inversion. Field data of a TEM test line are inverted using this method, which makes the basement layer visualized easily.
Citation
Rui Guo Xin Wu Lihua Liu Jutao Li Pan Xiao Guangyou Fang , "Adaptive Sharp Boundary Inversion for Transient Electromagnetic Data," Progress In Electromagnetics Research M, Vol. 57, 129-138, 2017.
doi:10.2528/PIERM17030803
http://www.jpier.org/PIERM/pier.php?paper=17030803
References

1. He, Z., Z. Zhao, H. Liu, and J. Qin, "TFEM for oil detection: Case studies," The Leading Edge, Vol. 31, No. 5, 518-521, 2012.
doi:10.1190/tle31050518.1

2. Fitterman, D. V. and M. T. Stewart, "Transient electromagnetic sounding for groundwater," Geophysics, Vol. 51, No. 4, 995-1005, 1986.
doi:10.1190/1.1442158

3. Tantum, S. L. and L. M. Collins, "A comparison of algorithms for subsurface target detection and identification using time-domain electromagnetic induction data," IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, No. 6, 1299-1306, 2001.
doi:10.1109/36.927453

4. Nabighian, M. and J. Corbett, "Electromagnetic methods in applied geophysics, Vol. 1: Theory," SEG, 1988.

5. Rodi, W. and R. L. Mackie, "Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion," Geophysics, Vol. 66, No. 1, 174-187, 2001.
doi:10.1190/1.1444893

6. Tikhonov, A. N. and V. I. Arsenin, "Solutions of ill-posed problems," Mathematics of Computation, Vol. 14, Winston, Washington, DC, 1977.

7. Constable, S. C., R. L. Parker, and C. G. Constable, "Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data," Geophysics, Vol. 52, No. 3, 289-300, 1987.
doi:10.1190/1.1442303

8. Qian, W., T. J. Gamey, J. S. Holladay, R. Lewis, and D. Abernathy, "Inversion of airborne electromagnetic data using an Occam technique to resolve a variable number of layers," Symposium on the Application of Geophysics to Engineering and Environmental Problems, 735-743, Society of Exploration Geophysicists, January 1997.

9. Vallée, M. A. and R. S. Smith, "Application of Occam’s inversion to airborne time-domain electromagnetics," The Leading Edge, Vol. 28, No. 3, 284-287, 2009.
doi:10.1190/1.3104071

10. Smith, J. T. and J. R. Booker, "Rapid inversion of two- and three-dimensional magnetotelluric data," Geophys. Res., 3905-3922, 1991.
doi:10.1029/90JB02416

11. Marquardt, D. W., "An algorithm for least-squares estimation of nonlinear parameters," Journal of the Society for Industrial and Applied Mathematics, Vol. 11, No. 2, 431-441, 1963.
doi:10.1137/0111030

12. Auken, E. and A. V. Christiansen, "Layered and laterally constrained 2D inversion of resistivity data," Geophysics, Vol. 69, No. 3, 752-761, 2004.
doi:10.1190/1.1759461

13. Portniaguine, O. and M. S. Zhdanov, "Focusing geophysical inversion images," Geophysics, Vol. 64, No. 3, 874-887, 1999.
doi:10.1190/1.1444596

14. Zhdanov, M. S., R. Ellis, and S. Mukherjee, "Three-dimensional regularized focusing inversion of gravity gradient tensor component data," Geophysics, Vol. 69, No. 4, 925-937, 2004.
doi:10.1190/1.1778236

15. Loke, M. H., I. Acworth, and T. Dahlin, "A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys," Exploration Geophysics, Vol. 34, No. 3, 182-187, 2003.
doi:10.1071/EG03182

16. Wu, X., et al., "Contrast test of the transient electromagnetic system (CASTEM) at the Dawangzhuang iron mine in Anhui province," Chinese J. Geophys., Vol. 59, No. 12, 4448-4456, 2016, doi: 10.6038/cjg20161207.

17. Anderson, W. L., "A hybrid fast Hankel transform algorithm for electromagnetic modeling," Geophysics, Vol. 54, No. 2, 263-266, 1989.
doi:10.1190/1.1442650

18. Johansen, H. K. and K. Sørensen, "Fast Hankel transforms," Geophysical Prospecting, Vol. 27, No. 4, 876-901, 1979.
doi:10.1111/j.1365-2478.1979.tb01005.x

19. Cakoni, F. and D. Colton, Qualitative Methods in Inverse Scattering Theory: An Introduction, Springer Science & Business Media, 2005.

20. Hansen, P. C., "Analysis of discrete ill-posed problems by means of the L-curve," SIAM Review, Vol. 34, No. 4, 561-580, 1992.
doi:10.1137/1034115