Vol. 61
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-10-10
A Study of Scattering from Snow Embedded with Non-Spherical Shapes of Scatterers with Relaxed Hierarchical Equivalent Source Algorithm (RHESA)
By
Progress In Electromagnetics Research M, Vol. 61, 51-60, 2017
Abstract
Remote sensing has been used widely in studying the earth terrain such as snow or sea ice due to its fast, convenient and long-term monitoring capabilities. SAR images acquired could be used to analyze the condition of snow, snow water equivalent (SWE), surface roughness and others. Theoretical models have also been developed to understand how microwave interacts with the snow medium and the scatterers embedded inside the medium. Conventionally, spherical shape of scatterers is commonly used to represent the ice particles embedded inside snow where the actual shape of scatterers can vary. This paper is to present a theoretical model based on radiative transfer formulation that utilizes computational electromagnetics in the modelling of scattering from arbitrary shape of scatterers. The paper also studies the effect of scatterer shape on scattering mechanisms and total backscattering coefficient. Numerical solution of Relaxed Hierarchical Equivalent Source Algorithm (RHESA) was integrated with existing radiative transfer theoretical model to simulate a layer of random discrete snow medium. Several shapes of scatterers were simulated, and theoretical simulation were compared with ground truth measurement data with promising results.
Citation
Chan-Fai Lum Xin Fu Hong-Tat Ewe Li Jun Jiang , "A Study of Scattering from Snow Embedded with Non-Spherical Shapes of Scatterers with Relaxed Hierarchical Equivalent Source Algorithm (RHESA)," Progress In Electromagnetics Research M, Vol. 61, 51-60, 2017.
doi:10.2528/PIERM17050502
http://www.jpier.org/PIERM/pier.php?paper=17050502
References

1. Syahali, S. and H. T. Ewe, "Remote sensing backscattering model for sea ice: Theoretical modelling and analysis," Adv. Polar Sci., Vol. 24, No. 4, 248-257, 2013.
doi:10.3724/SP.J.1085.2013.00248

2. Albert, M. D., Y. J. Lee, H. T. Ewe, and H. T. Chuah, "Multilayer model formulation and analysis of radar backscattering from sea ice," Progress In Electromagnetics Research, Vol. 128, 267-290, 2012.
doi:10.2528/PIER12020205

3. Tjuatja, S., A. K. Fung, and J. Bredow, "A scattering model for snow-covered sea ice," IEEE Transactions on Geoscience and Remote Sensing, Vol. 30, 804-810, 1992.
doi:10.1109/36.158876

4. Fung, A. K., Microwave Scattering and Emission Models and Their Applications, Artech House, Norwood, MA, 1994.

5. Ewe, H. T. and H. T. Chuah, "Electromagnetic scattering from an electrically dense vegetation medium," IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, No. 5, 2093-2105, 2000.
doi:10.1109/36.868868

6. Karam, M. A., F. Amar, and A. K. Fung, "Electromagnetic wave scattering from a forest or vegetation canopy: Ongoing research at the University of Texas at Arlington," IEEE Antennas and Propagation Magazine, Vol. 35, No. 2, 18-26, Apr. 1993.
doi:10.1109/74.207648

7. Ao, C. O. and J. A. Kong, "Analytical approximations in multiple scattering of electromagnetic waves by aligned dielectric spheroids," J. Opt. Soc. Am. A, Vol. 19, 1145-1156, Jun. 2002.
doi:10.1364/JOSAA.19.001145

8. Chuah, H.-T., S. Tjuatja, A. K. Fung, and J. W. Bredow, "A phase matrix for a dense discrete random medium: evaluation of volume scattering coefficient," IEEE Transactions on Geoscience and Remote Sensing, Vol. 34, No. 5, 1137-1143, Sep. 1996.
doi:10.1109/36.536529

9. Tsang, L., "Scattering of electromagnetic waves from a half space of nonspherical particles," Radio Science, Vol. 19, No. 6, 1450-1460, Nov.-Dec. 1984.
doi:10.1029/RS019i006p01450

10. Wu, T. D., K. S. Chen, J. Shi, H. W. Lee, and A. K. Fung, "A study of an AIEM model for bistatic scattering from randomly rough surfaces," IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 9, 2584-2598, Sep. 2008.
doi:10.1109/TGRS.2008.919822

11. Gherboudj, I., M. Bernier, F. Hicks, and R. Leconte, "Physical characterization of air inclusions in river ice," Cold Reg. Sci. Technol., Vol. 49, No. 3, 179-194, Sep. 2007.
doi:10.1016/j.coldregions.2007.02.008

12. Gherboudj, I. and M. Bernier, "A backscatter modeling for river Ice: Analysis and numerical results," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 4, Apr. 2010.
doi:10.1109/TGRS.2009.2034256

13. Du, J., J. Shi, and S. Wu, "A comparison of a second-order snow model with field observations," Proceedings of IGRASS’05, No. 05CH37663C, IEEE, Jul. 25-29, 2005.

14. Tsang, L., K. H. Ding, S. Huang, and X. Xu, "Electromagnetic computation in scattering of electromagnetic waves by random rough surface and dense media in microwave remote sensing of land surfaces," Proceedings of the IEEE, Vol. 101, No. 2, 255-279, Feb. 2013.
doi:10.1109/JPROC.2012.2214011

15. Colbeck, S. C., "A review of sintering in seasonal snow," CRREL Report 97-10, 11, 1997.

16. Gibson, W. C., The Method of Moments in Electromagnetics, Taylor & Francis Group, LLC, 2008.

17. Li, M. K. and W. C. Chew, "Wave-field interaction with complex structures using equivalence principle algorithm," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 1, 130-138, Jan. 2007.
doi:10.1109/TAP.2006.888453

18. Yla-Oijala, P. and M. Taskinen, "Solving electromagnetic scattering by multiple targets with surface equivalence principle algorithm," 2009 3rd European Conference on Antennas and Propagation, 88-92, Berlin, 2009.

19. Fu, X., L. J. Jiang, and H. T. Ewe, "A novel relaxed hierarchical equivalent source algorithm (RHESA) for electromagnetic scattering analysis of dielectric objects," Journal of Electromagnetic Waves and Applications, Vol. 30, No. 12, 1631-1642, 2016.
doi:10.1080/09205071.2016.1210544

20. Lu, C. C. and W. C. Chew, "A multilevel algorithm for solving a boundary integral equation of wave scattering," Micr. Opt. Technol. Lett., Vol. 8, 466-70, 1994.
doi:10.1002/mop.4650071013

21. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 2nd Ed., Artech House, Boston, MA, 2000.

22. Mishchenko, M. I., A. A. Lacis, and L. D. Travis, Scattering, Absorption, and Emission of Light by Small Particles, Cambridge University Press, 2002.

23. Hardy, J., J. Pomeroy, T. Link, D. Marks, D. Cline, K. Elder, and R. Davis, CLPX-Ground: Snow Measurements at the Local Scale Observation Site (LSOS), IOP3, NSIDC DAAC, Boulder, Colorado, USA, 2003.

24. Sarabandi, K., CLPX-Ground: Ground-based L and Ku Band Polarimetric Scatterometry, Version 1, IOP3, NSIDC DAAC, Boulder, Colorado, USA, 2003.

25. Yueh, S. H., CLPX-Airborne: Polarimetric Ku-band Scatterometer (POLSCAT) Data, IOP1 & IOP4, NSIDC DAAC, Boulder, Colorado, USA, 2003.

26. Zhang, L., J. Shi, Z. Zhang, and K. Zhao, "The estimation of dielectric constant of frozen soil-water mixture at microwave bands," Proceedings of 2003 IEEE International Geoscience and Remote Sensing Symposium, Vol. 4, 2903-2905, 2003.