1. Safa, Z., Z. Lahbib, and B. Seddik, "Conception of bi-band rectangular microstrip array antenna," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 12, No. 1, 23-36, Jun. 2013.
doi:10.1590/S2179-10742013000100003 Google Scholar
2. Bancroft, R., Microstrip and Printed Antenna Design, Chap. 2-3, Noble Publishing, 2004.
3. Ghosh, C. K. and S. K. Parui, "Design, analysis and optimization of a slotted microstrip patch antenna array at frequency 5.25 GHz for WLAN-SDMA system," International Journal on Electrical Engineering and Informatics, Vol. 2, No. 2, 102-112, May 2010.
doi:10.15676/ijeei.2010.2.2.3 Google Scholar
4. Alam, M. M., Md. M. R. Sonchoy, and Md. O. Goni, "Design and performance analysis of microstrip array antenna," PIERS Proceedings, 1837-1842, Moscow, Russia, Augus. 18-21, 2009. Google Scholar
5. Oulhaj, O., N. A. Touhami, M. Aghoutane, and A. Tazon, "A miniature microstrip patch antenna array with defected ground structure," IJMOT, Vol. 11, No. 1, 32-39, Jan. 2016. Google Scholar
6. Huque, M. T. I., et al. "Design and simulation of a low-cost and high gain microstrip patch antenna arrays for the X-band applications," International Conference on Network Communication and Computer, New Delhi, India, Mar. 21-23, 2011. Google Scholar
7. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory Tec., Vol. 47, 2059-2074, 1999.
doi:10.1109/22.798001 Google Scholar
8. Bait-Suwailam, M. M., O. F. Siddiqui, and O. M. Ramahi, "Artificial complementary resonators for mutual coupling reduction in microstrip antennas," Proceedings of the 41st European, 870-873, 2011. Google Scholar
9. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap structures a low mutual coupling design for array applications," IEEE Trans. Antennas Propag., Vol. 51, 2936-2946, 2003.
doi:10.1109/TAP.2003.817983 Google Scholar
10. Garg, B., R. Tiwari, A. Kumar, and S. K. Thakur, "Design of broadband rectangular microstrip patch antenna inset `L' shaped feed with rectangular `L' slots in ground plane," International Journal of Computer Applications, Vol. 29, No. 1, 0975-8887, Sep. 2011.
doi:10.5120/3532-4818 Google Scholar
11. Chiu, C. Y., C. H. Cheng, R. D. Murch, and C. R. Rowell, "Reduction of mutual coupling between closely-packed antenna elements," IEEE Trans. Antennas Propag., Vol. 55, 1732-1738, 2007.
doi:10.1109/TAP.2007.898618 Google Scholar
12. Wang, Y. and Z. Du, "A wideband printed dual-antenna with three neutralization lines for mobile terminals," IEEE Trans. Antennas Propag., Vol. 62, No. 3, 1495-1500, Mar. 2014.
doi:10.1109/TAP.2013.2295226 Google Scholar
13. Kim, D.-O., Y.-J. Ko, U.-Y. Yoon, and D.-H. Cho, "Decoupling structure with complementary split ring resonators in parallel array patch antennas for MIMO applications," Proceedings of ISAP 2014, Kaohsiung, Taiwan, Dec. 2-5, 2014. Google Scholar
14. Bait-Suwailiam, M. M., O. F. Siddiqui, and O. M. Ramahi, "Mutual coupling reduction between microstrip patch antennas using slotted complementary split-ring resonators," IEEE Antennas Wireless Propag. Lett., Vol. 9, 876-878, 2010.
doi:10.1109/LAWP.2010.2074175 Google Scholar
15. Deukhyeon, G., Y. Lee, T. Song, and J. Choi, "Design of MIMO antenna with decoupling network for LTE mobile application," 2012 Asia-Pacific Microwave Conference Proceedings (APMC), 705-707, Dec. 2012.
doi:10.1109/APMC.2012.6421710 Google Scholar
16. Daniel, J., "Mutual coupling between antennas for emission or reception - Application to passive and active dipoles," IEEE Trans. Antennas Propag., Vol. 22, 347-349, Mar. 1974.
doi:10.1109/TAP.1974.1140774 Google Scholar
17. Abramowicz, A., "Unified description of coupled resonators and coupled transmission lines," Physical Aspects of Microwave and Radar Applications, Vol. 119, No. 4, 548-552, 2011. Google Scholar
18. Belbachir, A. K., M. Boussouis, and N. A. Touhami, "High-performance LPF using coupled C-shape DGS and radial stub resonators for microwave mixer," Progress In Electromagnetics Research Letters, Vol. 58, 97-103, 2016.
doi:10.2528/PIERL15090105 Google Scholar
19. Tecpoyotl-Torres, M., J. G. Vera Dimas, R. Castañeda-Sotelo, and R. Cabello-Ruiz, "Rectangular patch antenna array with defect ground structure for Wi-Fi," International Journal of Engineering and Innovative Technology (IJEIT), Vol. 3, No. 5, 365-371, Nov. 2013. Google Scholar
20. Rajo-Iglesias, E., Ó. Quevedo-Teruel, and L. Inclán-Sánchez, "Mutual coupling reduction in patch antenna arrays by using a planar EBG structure and a multilayer dielectric substrate," IEEE Trans. Antennas Propag., Vol. 56, No. 6, 1648-1655, Jun. 2008.
doi:10.1109/TAP.2008.923306 Google Scholar
21. Bait-Suwailam, M. M., O. F. Siddiqui, and O. M. Ramahi, "Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators," IEEE Antennas Wireless Propag. Lett., Vol. 9, 876-878, 2010.
doi:10.1109/LAWP.2010.2074175 Google Scholar
22. Habashi, A., J. Naurinia, and C. Ghbadi, "A rectangular defected ground structure for reduction of mutual coupling between closely spaced microstrip antennas," Proc. 20th Iranian Conf. Elect. Eng., 1347-1350, 2012. Google Scholar
23. Expósito-Domínguez, G., J. M. Fernández-González, P. Padilla, and M. Sierra-Castaner, "New EBG solutions for mutual coupling reduction," Proc. 6th EuCAP, 2841-2844, 2011. Google Scholar