Vol. 60
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-09-20
Novel Decoupling Technique for Enhancing the Mutual Coupling Between Printed Antennas
By
Progress In Electromagnetics Research M, Vol. 60, 121-129, 2017
Abstract
In this work, an E-shape Defected Ground Structure (DGS) is achieved to reduce the mutual coupling between two nearby microstrip antennas up to 47%(from 0.064 to 0.03). Both antennas radiate in the same frequency band of 10 GHz. The technique is based on a wall integrating periodic structure permitting the absorption of the electromagnetic field. By using this structure, it was possible to achieve a 20dB reduction in the insertion loss S21 between the two microstrip patch antennas with center-to-center distance of 0.37λ0 (λ0 is the free-space wavelength). The obtained coupling coefficient demonstrates that we have a good isolation between the two antennas. EM solver, simulating and measuring the reflection and transmission coefficients of the designed antenna arrays, achieves the reduction of the mutual coupling. The simulated results are verified by measuring the fabricated prototypes.
Citation
Otman Oulhaj Naima Amar Touhami Mohamed Aghoutane Abdelmounaim Belbachir Kchairi Hanae Elftouh , "Novel Decoupling Technique for Enhancing the Mutual Coupling Between Printed Antennas," Progress In Electromagnetics Research M, Vol. 60, 121-129, 2017.
doi:10.2528/PIERM17072610
http://www.jpier.org/PIERM/pier.php?paper=17072610
References

1. Safa, Z., Z. Lahbib, and B. Seddik, "Conception of bi-band rectangular microstrip array antenna," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 12, No. 1, 23-36, Jun. 2013.
doi:10.1590/S2179-10742013000100003

2. Bancroft, R., Microstrip and Printed Antenna Design, Chap. 2-3, Noble Publishing, 2004.

3. Ghosh, C. K. and S. K. Parui, "Design, analysis and optimization of a slotted microstrip patch antenna array at frequency 5.25 GHz for WLAN-SDMA system," International Journal on Electrical Engineering and Informatics, Vol. 2, No. 2, 102-112, May 2010.
doi:10.15676/ijeei.2010.2.2.3

4. Alam, M. M., Md. M. R. Sonchoy, and Md. O. Goni, "Design and performance analysis of microstrip array antenna," PIERS Proceedings, 1837-1842, Moscow, Russia, Augus. 18-21, 2009.

5. Oulhaj, O., N. A. Touhami, M. Aghoutane, and A. Tazon, "A miniature microstrip patch antenna array with defected ground structure," IJMOT, Vol. 11, No. 1, 32-39, Jan. 2016.

6. Huque, M. T. I., et al., "Design and simulation of a low-cost and high gain microstrip patch antenna arrays for the X-band applications," International Conference on Network Communication and Computer, New Delhi, India, Mar. 21-23, 2011.

7. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory Tec., Vol. 47, 2059-2074, 1999.
doi:10.1109/22.798001

8. Bait-Suwailam, M. M., O. F. Siddiqui, and O. M. Ramahi, "Artificial complementary resonators for mutual coupling reduction in microstrip antennas," Proceedings of the 41st European, 870-873, 2011.

9. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap structures a low mutual coupling design for array applications," IEEE Trans. Antennas Propag., Vol. 51, 2936-2946, 2003.
doi:10.1109/TAP.2003.817983

10. Garg, B., R. Tiwari, A. Kumar, and S. K. Thakur, "Design of broadband rectangular microstrip patch antenna inset `L' shaped feed with rectangular `L' slots in ground plane," International Journal of Computer Applications, Vol. 29, No. 1, 0975-8887, Sep. 2011.
doi:10.5120/3532-4818

11. Chiu, C. Y., C. H. Cheng, R. D. Murch, and C. R. Rowell, "Reduction of mutual coupling between closely-packed antenna elements," IEEE Trans. Antennas Propag., Vol. 55, 1732-1738, 2007.
doi:10.1109/TAP.2007.898618

12. Wang, Y. and Z. Du, "A wideband printed dual-antenna with three neutralization lines for mobile terminals," IEEE Trans. Antennas Propag., Vol. 62, No. 3, 1495-1500, Mar. 2014.
doi:10.1109/TAP.2013.2295226

13. Kim, D.-O., Y.-J. Ko, U.-Y. Yoon, and D.-H. Cho, "Decoupling structure with complementary split ring resonators in parallel array patch antennas for MIMO applications," Proceedings of ISAP 2014, Kaohsiung, Taiwan, Dec. 2-5, 2014.

14. Bait-Suwailiam, M. M., O. F. Siddiqui, and O. M. Ramahi, "Mutual coupling reduction between microstrip patch antennas using slotted complementary split-ring resonators," IEEE Antennas Wireless Propag. Lett., Vol. 9, 876-878, 2010.
doi:10.1109/LAWP.2010.2074175

15. Deukhyeon, G., Y. Lee, T. Song, and J. Choi, "Design of MIMO antenna with decoupling network for LTE mobile application," 2012 Asia-Pacific Microwave Conference Proceedings (APMC), 705-707, Dec. 2012.
doi:10.1109/APMC.2012.6421710

16. Daniel, J., "Mutual coupling between antennas for emission or reception - Application to passive and active dipoles," IEEE Trans. Antennas Propag., Vol. 22, 347-349, Mar. 1974.
doi:10.1109/TAP.1974.1140774

17. Abramowicz, A., "Unified description of coupled resonators and coupled transmission lines," Physical Aspects of Microwave and Radar Applications, Vol. 119, No. 4, 548-552, 2011.

18. Belbachir, A. K., M. Boussouis, and N. A. Touhami, "High-performance LPF using coupled C-shape DGS and radial stub resonators for microwave mixer," Progress In Electromagnetics Research Letters, Vol. 58, 97-103, 2016.
doi:10.2528/PIERL15090105

19. Tecpoyotl-Torres, M., J. G. Vera Dimas, R. Castañeda-Sotelo, and R. Cabello-Ruiz, "Rectangular patch antenna array with defect ground structure for Wi-Fi," International Journal of Engineering and Innovative Technology (IJEIT), Vol. 3, No. 5, 365-371, Nov. 2013.

20. Rajo-Iglesias, E., Ó. Quevedo-Teruel, and L. Inclán-Sánchez, "Mutual coupling reduction in patch antenna arrays by using a planar EBG structure and a multilayer dielectric substrate," IEEE Trans. Antennas Propag., Vol. 56, No. 6, 1648-1655, Jun. 2008.
doi:10.1109/TAP.2008.923306

21. Bait-Suwailam, M. M., O. F. Siddiqui, and O. M. Ramahi, "Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators," IEEE Antennas Wireless Propag. Lett., Vol. 9, 876-878, 2010.
doi:10.1109/LAWP.2010.2074175

22. Habashi, A., J. Naurinia, and C. Ghbadi, "A rectangular defected ground structure for reduction of mutual coupling between closely spaced microstrip antennas," Proc. 20th Iranian Conf. Elect. Eng., 1347-1350, 2012.

23. Expósito-Domínguez, G., J. M. Fernández-González, P. Padilla, and M. Sierra-Castaner, "New EBG solutions for mutual coupling reduction," Proc. 6th EuCAP, 2841-2844, 2011.