1. Cihangir, A., W. G. Whittow, et al. "Feasibility study of 4G cellular antennas for eyewear communicating devices," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1704-1707, 2013.
doi:10.1109/LAWP.2013.2287204 Google Scholar
2. Cihangir, A., C. Luxey, G. Jacquemod, et al. "Investigation of the effect of metallic frames on 4G eyewear antennas," IEEE Antennas and Propagation Conference, 60-63, 2014. Google Scholar
3. Caputa, K., M. Okoniewski, and M. A. Stuchly, "An algorithm for computations of the power deposition in human tissue," IEEE Antennas and Propagation Magazine, Vol. 41, 102-107, 1999.
doi:10.1109/74.789742 Google Scholar
4. Hirata, A., S. I. Matsuyama, and T. Shiozawa, "Temperature rises in the human eye exposed to EMwaves in the frequency range 0.6–6 GHz," IEEE Transactions on Electromagnetic Compatibility, Vol. 42, No. 4, 386-393, 2000.
doi:10.1109/15.902308 Google Scholar
5. Cacciola, M., G. Megali, D. Pellicano, et al. "Numerical modelling for evaluation of biological effects due to high frequency radiations in Indoor Environment," PIERS Online, Vol. 6, No. 3, 247-251, 2010.
doi:10.2529/PIERS090922051636 Google Scholar
6. Bernardi, P., M. Cavagnaro, S. Pisa, et al. "SAR distribution and temperature increase in an anatomical model of the human eye exposed to the field radiated by the user antenna in a wireless LAN," IEEE Transactions on Microwave Theory & Techniques, Vol. 46, No. 12, 2074-2082, 1998.
doi:10.1109/22.739285 Google Scholar
7. Laakso, I., R. Morimoto, A. Hirata, et al. "Computational dosimetry of the human head exposed to near-field microwaves using measured blood flow," IEEE Transactions on Electromagnetic Compatibility, Vol. 59, No. 2, 739-746, 2017.
doi:10.1109/TEMC.2016.2633326 Google Scholar
8. Hossain, M. I., M. R. I. Faruque, and M. T. Islam, "Analysis on the effect of the distances and inclination angles between human head and mobile phone on SAR," Progress in Biophysics and Molecular Biology, Vol. 119, No. 2, 103-110, 2015.
doi:10.1016/j.pbiomolbio.2015.03.008 Google Scholar
9. Wake, K., N. Varsier, et al. "The estimation of 3D SAR distributions in the human head from mobile phone compliance testing data for epidemiological studies," Phys. Med. Biol., Vol. 54, 5695-5706, 2009.
doi:10.1088/0031-9155/54/19/003 Google Scholar
10. Cooper, J. and V. Hombach, "Increase in specific absorption rate in human heads arising from implantations," Electronics Letters, Vol. 32, No. 24, 2217-2219, 1996.
doi:10.1049/el:19961507 Google Scholar
11. Whittow, W. G., C. J. Panagamuwa, R. M. Edwards, et al. "On the effects of straight metallic jewellery on the specific absorption rates resulting from face-illuminating radio communication devices at popular cellular frequencies," Phys. Med. Biol., Vol. 53, No. 5, 1167-1174, 2008.
doi:10.1088/0031-9155/53/5/002 Google Scholar
12. Stergiou, K., C. Panagamuwa, W. Whittow, and R. Edwards, "Effects of metallic semi-rimmed spectacles on SAR in the head from a 900MHz frontal dipole source," Antennas & Propagation Conference, IEEE, 721-724, 2009. Google Scholar
13. Troulis, S. E., W. G. Scanlon, and N. E. Evans, "Effect of ‘hands-free’ leads and spectacles on SAR for a 1.8GHz cellular handset," IEI/IEE Symposium on Telecommunications Systems Research, 1675-1684, 2001. Google Scholar
14. Lan, J. Q. and K. M. Huang, "Evaluation of SAR in a human head with glasses exposed to radiation of a mobile phone," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 15, 1919-01930, 2013.
doi:10.1080/09205071.2013.828576 Google Scholar
15., Virtanen, H., J. Keshvari, and R. Lappalainen, "The effect of authentic metallic implants on the SAR distribution of the head exposed to 900, 1800 and 2450 MHz dipole near field," Phys. Med. Biol., Vol. 52, No. 5, 1221, 2007.
doi:10.1088/0031-9155/52/5/001 Google Scholar
16. Anzaldi, G., F. Silva, M. Fernandez, M. Quilez, and P. J. Riu, "Initial analysis of SAR from a cell phone inside a vehicle by numerical computation biomedical engineering," IEEE T. Bio-Med. Eng., Vol. 54, 921-930, 2007.
doi:10.1109/TBME.2006.889776 Google Scholar
17. World Health Organization, WHO Research Agenda for Radiofrequency Fields, 2010.
18. Dovrat, A., R. Berenson, E. Bormusov, et al. "Localized effects of microwave radiation on the intact eye lens in culture conditions," Bioelectromagnetics, Vol. 26, No. 5, 398-405, 2005.
doi:10.1002/bem.20114 Google Scholar
19. Guy, A. W., J. C. Lin, et al. "Effect of 2450-MHz radiation on the rabbit eye," IEEE Transactions on Microwave Theory and Techniques, Vol. 23, No. 6, 492-498, 1975.
doi:10.1109/TMTT.1975.1128606 Google Scholar
20. Scott, J. A., "The computation of temperature rises in the human eye induced by infrared radiation," Phys. Med. Biol., Vol. 33, 243-257, 1988.
doi:10.1088/0031-9155/33/2/004 Google Scholar
21. Hirata, A., S. Watanabe, M. Kojima, et al. "Computational verification of anesthesia effect on temperature variations in rabbit eyes exposed to 2.45 GHz microwave energy," Bioelectromagnetics, Vol. 27, No. 8, 602-612, 2006.
doi:10.1002/bem.20251 Google Scholar
22. Pall, M. L., "Scientific evidence contradicts findings and assumptions of Canadian safety panel 6: microwaves act through voltage-gated calcium channel activation to induce biological impacts at non-thermal levels, supporting a paradigm shift for microwave/lower frequen," Reviews on Environmental Health, Vol. 30, No. 2, 99-116, 2015.
doi:10.1515/reveh-2015-0001 Google Scholar
23. Buccella, C., V. De Santis, and M. Feliziani, "Numerical prediction of SAR and thermal elevation in a 0.25-mm 3-D model of the human eye exposed to handheld transmitters," IEEE International Symposium on Electromagnetic Compatibility, 1-6, 2007. Google Scholar
24. Rodrigues, A. O., L. Malta, J. J. Viana, et al. "A head model for the calculation of SAR and temperature rise induced by cellular phones," IEEE Transactions on Magnetics, Vol. 44, No. 6, 1446-1449, 2008.
doi:10.1109/TMAG.2008.915837 Google Scholar
25. Gandhi, O. P., G. Lazzi, and C. M. Furse, "Electromagnetic absorption in the human head and neck for mobile telephones at 835 and 1900 MHz," IEEE T. Microw. Theory., Vol. 44, 1884-1897, 1996.
doi:10.1109/22.539947 Google Scholar
26. Van Leeuwen, G. M., J., J. J.W. Lagendijk, B. J. A. M. Van Leersum, A. P. M. Zwamborn, S. N. Hornsleth, and A. N. T. J. Kotte, "Calculation of change in brain temperatures due to exposure to a mobile phone," Phys. Med. Biol., Vol. 44, 2367-2379, 1999.
doi:10.1088/0031-9155/44/10/301 Google Scholar
27. Dimbylow, P. J. and S. M. Mann, "SAR calculations in an anatomically realistic model of the head for mobile communication transceivers at 900MHz and 1.8 GHz," Phys. Med. Biol., Vol. 39, 1537-1553, 1994.
doi:10.1088/0031-9155/39/10/003 Google Scholar
28. Jensen, M. A. and Y. Rahmat-Samii, "EM interaction of handset antennas and a human in personal communications," Proceedings of the IEEE, Vol. 83, No. 1, 7-17, 1995.
doi:10.1109/5.362755 Google Scholar
29. Dimbylowt, P. J. and O. P. Gandhif, "Finite-difference time-domain calculations of SAR in a realistic heterogeneous model of the head for plane-wave exposure from 600 MHz to 3 GHz," Phys. Med. Biol., Vol. 36, 1075-1089, 1991.
doi:10.1088/0031-9155/36/8/004 Google Scholar
30. Scott, J. A., "A finite element model of heat transport in the human eye," Phys. Med. Biol., Vol. 33, 227-241, 1988.
doi:10.1088/0031-9155/33/2/003 Google Scholar
31. Lin, J. C., Advances in Electromagnetic Fields in Living Systems, Springer, 2005.
doi:10.1007/b104216
32. Brien, A. H., "The myopia epidemic is there a role for corneal refractive therapy?," Eye Contact Lens, Vol. 30, 244-246, 2004. Google Scholar
33. IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz — Amendment 1: Specifies ceiling limits for induced and contact current, clarifies distinctions between localized exposure and spatial peak power density, IEEE Std C95.1a-2010 (Amendment to IEEE Std C95.1-2005), C1-9, 2010.
34. International Commission on Non-Ionizing Radiation Protection (ICNIRP), Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz), Vol. 74, 494-522 Health Phys., 1998.
35. Gabriel, C., R. J. Sheppard, and E. H. Grant, "Dielectric properties of ocular tissues at 37 degrees C," Phys. Med. Biol., Vol. 28, 43-49, 1983.
doi:10.1088/0031-9155/28/1/004 Google Scholar
36. Yee, K. S., "Numerical solutions of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propag., Vol. 14, 302-307, 1966. Google Scholar
37. Sacks, Z. S., D. M. Kinsland, and J. F. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition," IEEE Trans. Antennas Propag., Vol. 43, 1460-1463, 1995.
doi:10.1109/8.477075 Google Scholar
38. Gedney, S. D., "An anisotropic perfectly matched layer absorbing media for the truncation of FDTD lattices," IEEE Trans. Antennas Propag., Vol. 44, 1630-1639, 1996.
doi:10.1109/8.546249 Google Scholar