Vol. 63
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-12-05
Evaluation of Microwave Microdosimetry for Human Eyes with Glasses Exposed to Wireless Eyewear Devices at Phone Call State
By
Progress In Electromagnetics Research M, Vol. 63, 71-81, 2018
Abstract
This paper evaluates the effect of glasses on the Specific Absorption Rate (SAR) and the absorbed power in the human head exposed to microwave from wireless eyewear device at phone call state. Due to the sensitivity of eyes to microwave, this paper mainly concentrate on the SAR and the absorbed power in ocular tissues. The calculated results indicate that wearing glasses can obviously increase the maximal SAR and the absorbed power in ocular tissues. Glasses has almost doubled the maximal SAR in ocular tissues. The absorbed power with glasses is about 3.1-4.5 times as big as that without glasses. Furthermore, we find that the maximal SAR and absorbed power are sensitive to the width of glass leg and the thickness of spectacle lens, while variation trends with the varying glasses size are quite different. Hypermyopia patient might suffer from higher risk of getting the oculopathy due to the larger SAR caused by the thicker spectacle lens. In conclusion, wearing glasses may pose higher health risk on eyes of wireless eyewear device user. This paper would provide valuable reference data for the future evaluation of microwave biological effect on eyes.
Citation
Junqing Lan Tao Hong Xiao Liang Guohong Du , "Evaluation of Microwave Microdosimetry for Human Eyes with Glasses Exposed to Wireless Eyewear Devices at Phone Call State," Progress In Electromagnetics Research M, Vol. 63, 71-81, 2018.
doi:10.2528/PIERM17080802
http://www.jpier.org/PIERM/pier.php?paper=17080802
References

1. Cihangir, A., et al., "Feasibility study of 4G cellular antennas for eyewear communicating devices," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1704-1707, 2013.
doi:10.1109/LAWP.2013.2287204

2. Cihangir, A., et al., "Investigation of the effect of metallic frames on 4G eyewear antennas," IEEE Antennas and Propagation Conference, 60-63, 2014.

3. Caputa, K., M. Okoniewski, and M. A. Stuchly, "An algorithm for computations of the power deposition in human tissue," IEEE Antennas and Propagation Magazine, Vol. 41, 102-107, 1999.
doi:10.1109/74.789742

4. Hirata, A., S. I. Matsuyama, and T. Shiozawa, "Temperature rises in the human eye exposed to EMwaves in the frequency range 0.6–6 GHz," IEEE Transactions on Electromagnetic Compatibility, Vol. 42, No. 4, 386-393, 2000.
doi:10.1109/15.902308

5. Cacciola, M., et al., "Numerical modelling for evaluation of biological effects due to high frequency radiations in Indoor Environment," PIERS Online, Vol. 6, No. 3, 247-251, 2010.
doi:10.2529/PIERS090922051636

6. Bernardi, P., et al., "SAR distribution and temperature increase in an anatomical model of the human eye exposed to the field radiated by the user antenna in a wireless LAN," IEEE Transactions on Microwave Theory & Techniques, Vol. 46, No. 12, 2074-2082, 1998.
doi:10.1109/22.739285

7. Laakso, I., et al., "Computational dosimetry of the human head exposed to near-field microwaves using measured blood flow," IEEE Transactions on Electromagnetic Compatibility, Vol. 59, No. 2, 739-746, 2017.
doi:10.1109/TEMC.2016.2633326

8. Hossain, M. I., M. R. I. Faruque, and M. T. Islam, "Analysis on the effect of the distances and inclination angles between human head and mobile phone on SAR," Progress in Biophysics and Molecular Biology, Vol. 119, No. 2, 103-110, 2015.
doi:10.1016/j.pbiomolbio.2015.03.008

9. Wake, K., et al., "The estimation of 3D SAR distributions in the human head from mobile phone compliance testing data for epidemiological studies," Phys. Med. Biol., Vol. 54, 5695-5706, 2009.
doi:10.1088/0031-9155/54/19/003

10. Cooper, J. and V. Hombach, "Increase in specific absorption rate in human heads arising from implantations," Electronics Letters, Vol. 32, No. 24, 2217-2219, 1996.
doi:10.1049/el:19961507

11. Whittow, W. G., et al., "On the effects of straight metallic jewellery on the specific absorption rates resulting from face-illuminating radio communication devices at popular cellular frequencies," Phys. Med. Biol., Vol. 53, No. 5, 1167-1174, 2008.
doi:10.1088/0031-9155/53/5/002

12. Stergiou, K., C. Panagamuwa, W. Whittow, and R. Edwards, "Effects of metallic semi-rimmed spectacles on SAR in the head from a 900MHz frontal dipole source," Antennas & Propagation Conference, IEEE, 721-724, 2009.

13. Troulis, S. E., W. G. Scanlon, and N. E. Evans, "Effect of ‘hands-free’ leads and spectacles on SAR for a 1.8GHz cellular handset," IEI/IEE Symposium on Telecommunications Systems Research, 1675-1684, 2001.

14. Lan, J. Q. and K. M. Huang, "Evaluation of SAR in a human head with glasses exposed to radiation of a mobile phone," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 15, 1919-01930, 2013.
doi:10.1080/09205071.2013.828576

15., Virtanen, H., J. Keshvari, and R. Lappalainen, "The effect of authentic metallic implants on the SAR distribution of the head exposed to 900, 1800 and 2450 MHz dipole near field," Phys. Med. Biol., Vol. 52, No. 5, 1221, 2007.
doi:10.1088/0031-9155/52/5/001

16. Anzaldi, G., F. Silva, M. Fernandez, M. Quilez, and P. J. Riu, "Initial analysis of SAR from a cell phone inside a vehicle by numerical computation biomedical engineering," IEEE T. Bio-Med. Eng., Vol. 54, 921-930, 2007.
doi:10.1109/TBME.2006.889776

17. World Health Organization, WHO Research Agenda for Radiofrequency Fields, 2010.

18. Dovrat, A., et al., "Localized effects of microwave radiation on the intact eye lens in culture conditions," Bioelectromagnetics, Vol. 26, No. 5, 398-405, 2005.
doi:10.1002/bem.20114

19. Guy, A. W., et al., "Effect of 2450-MHz radiation on the rabbit eye," IEEE Transactions on Microwave Theory and Techniques, Vol. 23, No. 6, 492-498, 1975.
doi:10.1109/TMTT.1975.1128606

20. Scott, J. A., "The computation of temperature rises in the human eye induced by infrared radiation," Phys. Med. Biol., Vol. 33, 243-257, 1988.
doi:10.1088/0031-9155/33/2/004

21. Hirata, A., et al., "Computational verification of anesthesia effect on temperature variations in rabbit eyes exposed to 2.45 GHz microwave energy," Bioelectromagnetics, Vol. 27, No. 8, 602-612, 2006.
doi:10.1002/bem.20251

22. Pall, M. L., "Scientific evidence contradicts findings and assumptions of Canadian safety panel 6: microwaves act through voltage-gated calcium channel activation to induce biological impacts at non-thermal levels, supporting a paradigm shift for microwave/lower frequen," Reviews on Environmental Health, Vol. 30, No. 2, 99-116, 2015.
doi:10.1515/reveh-2015-0001

23. Buccella, C., V. De Santis, and M. Feliziani, "Numerical prediction of SAR and thermal elevation in a 0.25-mm 3-D model of the human eye exposed to handheld transmitters," IEEE International Symposium on Electromagnetic Compatibility, 1-6, 2007.

24. Rodrigues, A. O., et al., "A head model for the calculation of SAR and temperature rise induced by cellular phones," IEEE Transactions on Magnetics, Vol. 44, No. 6, 1446-1449, 2008.
doi:10.1109/TMAG.2008.915837

25. Gandhi, O. P., G. Lazzi, and C. M. Furse, "Electromagnetic absorption in the human head and neck for mobile telephones at 835 and 1900 MHz," IEEE T. Microw. Theory., Vol. 44, 1884-1897, 1996.
doi:10.1109/22.539947

26. Van Leeuwen, G. M., J., J. J.W. Lagendijk, B. J. A. M. Van Leersum, A. P. M. Zwamborn, S. N. Hornsleth, and A. N. T. J. Kotte, "Calculation of change in brain temperatures due to exposure to a mobile phone," Phys. Med. Biol., Vol. 44, 2367-2379, 1999.
doi:10.1088/0031-9155/44/10/301

27. Dimbylow, P. J. and S. M. Mann, "SAR calculations in an anatomically realistic model of the head for mobile communication transceivers at 900MHz and 1.8 GHz," Phys. Med. Biol., Vol. 39, 1537-1553, 1994.
doi:10.1088/0031-9155/39/10/003

28. Jensen, M. A. and Y. Rahmat-Samii, "EM interaction of handset antennas and a human in personal communications," Proceedings of the IEEE, Vol. 83, No. 1, 7-17, 1995.
doi:10.1109/5.362755

29. Dimbylowt, P. J. and O. P. Gandhif, "Finite-difference time-domain calculations of SAR in a realistic heterogeneous model of the head for plane-wave exposure from 600 MHz to 3 GHz," Phys. Med. Biol., Vol. 36, 1075-1089, 1991.
doi:10.1088/0031-9155/36/8/004

30. Scott, J. A., "A finite element model of heat transport in the human eye," Phys. Med. Biol., Vol. 33, 227-241, 1988.
doi:10.1088/0031-9155/33/2/003

31. Lin, J. C., Advances in Electromagnetic Fields in Living Systems, Springer, New York, 2005.
doi:10.1007/b104216

32. Brien, A. H., "The myopia epidemic is there a role for corneal refractive therapy?," Eye Contact Lens, Vol. 30, 244-246, 2004.

33. IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz — Amendment 1: Specifies ceiling limits for induced and contact current, clarifies distinctions between localized exposure and spatial peak power density, IEEE Std C95.1a-2010 (Amendment to IEEE Std C95.1-2005), C1-9, 2010.

34. International Commission on Non-Ionizing Radiation Protection (ICNIRP) Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz), Vol. 74, 494-522 Health Phys., 1998.

35. Gabriel, C., R. J. Sheppard, and E. H. Grant, "Dielectric properties of ocular tissues at 37 degrees C," Phys. Med. Biol., Vol. 28, 43-49, 1983.
doi:10.1088/0031-9155/28/1/004

36. Yee, K. S., "Numerical solutions of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propag., Vol. 14, 302-307, 1966.

37. Sacks, Z. S., D. M. Kinsland, and J. F. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition," IEEE Trans. Antennas Propag., Vol. 43, 1460-1463, 1995.
doi:10.1109/8.477075

38. Gedney, S. D., "An anisotropic perfectly matched layer absorbing media for the truncation of FDTD lattices," IEEE Trans. Antennas Propag., Vol. 44, 1630-1639, 1996.
doi:10.1109/8.546249