Vol. 62
Latest Volume
All Volumes
PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-11-27
Optimization of a Novel Magneto-Rheological Device with Permanent Magnets
By
Progress In Electromagnetics Research M, Vol. 62, 175-188, 2017
Abstract
In this paper a novel evolutionary algorithm is used for the optimization of the performance of a magnetorheological (MR) device, capable to transmit torque between two shafts and powered by a system of Permanent Magnets (PMs). The stochastic, evolutionary, global optimization algorithm is based on a modified version of the self-organizing map. It uses a dedicated simpli ed analytical model of the device, developed in order to obtain a fast and accurate evaluation of the torque. Then, by means this model, the cost function to find the optimal parameters of the device is defined. Once the optimal parameters are identified, the performance of the proposed device is simulated by means of a FEM software. The results in terms of magnetic flux density inside the fluid, the transmissible torque and the actuation torque necessary to perform the device activation are discussed. Finally, a preliminary experimental validation of the proposed device is performed.
Citation
Mauro Tucci Luca Sani Vincenzo Di Dio , "Optimization of a Novel Magneto-Rheological Device with Permanent Magnets," Progress In Electromagnetics Research M, Vol. 62, 175-188, 2017.
doi:10.2528/PIERM17091806
http://www.jpier.org/PIERM/pier.php?paper=17091806
References

1. Carlson, J. D., D. N. Catanzarite, and K. A. St Clair, "Commercial magneto-rheological fluid device," Proceedings 5th Int. Conf. on ER Fluids, MR Suspensions and Associated Technology, W. Bullough (ed.), 20-28, World Scientific, Singapore, 1996.

2. Carlson, J. D., "The promise of controllable fluids," Proc. of Actuator 94 (H. Borgmann and K. Lenz, Eds.), AXON Technologies Consult GmbH, 266-270, 1994.

3. Kordonsky, W. I., "Elements and devices based on magnetorheological effect," J. Intell. Mater. Syst. Struct., Vol. 4, No. 1, 65-69, 1993.
doi:10.1177/1045389X9300400108

4. Shorey, A. and M. DeMarco, "Application of magneto-rheological finishing (MRF) to the figuring of adaptive optics systems," Adaptive Optics: Methods, Analysis and Applications, Charlotte, North Carolina, June 6, 2005.

5. Lee, S. O., K. I. Jang, B. K. Min, S. J. Lee, and J. W. Seok, "A study on tribological properties of magneto-rheological fluid (MRF) in polishing process," Proceedings of the KSPE Spring Conference, Vol. 40, 20-33, 2006.

6. Rossa, C., J. Lozada, and A. Micaelli, "Interaction Power Flow Based Control of a 1-DOF Hybrid Haptic Interface," Proceedings of International Conference, EuroHaptics 2012, Tampere, Finland, June 13-15, 2012.

7. Bicchi, A., M. Raugi, R. Rizzo, and N. Sgambelluri, "Analysis and design of an electromagnetic system for the characterization of magneto-rheological fluids for haptic interfaces," IEEE Trans. on Mag., Vol. 41, No. 5, 1876-1879, May 2005.
doi:10.1109/TMAG.2005.846280

8. Scilingo, E. P., R. Rizzo, N. Sgambelluri, M. Raugi, and A. Bicchi, "Electromagnetic modeling and design of haptic interface prototypes based on magnetorheological fluids," IEEE Trans on Mag., Vol. 43, No. 9, September 2007.

9. Rizzo, R., "A permanent magnets exciter for MRF-based haptic interfaces," IEEE Trans on Mag., Vol. 49, No. 4, 1390-1401, April 2013.
doi:10.1109/TMAG.2012.2233491

10. Raugi, M., N. Sgambelluri, E. P. Scilingo, A. Bicchi, and R. Rizzo, "Advanced modelling and preliminary psychophysical experiments for a free-hand haptic device," Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 1558-1563, 2006.

11. Sgambelluri, N., M. Raugi, R. Rizzo, E.P. Scilingo, and A. Bicchi, "Free hand haptic interfaces based on magnetorheological fluids," Proceedings of the 14th Symposium on Haptics Interfaces for Virtual Environment and Teleoperator Systems, Vol. 1, 367-371, 2006.
doi:10.1109/HAPTIC.2006.1627124

12. Rossa, C., J. Lozada, and A. Micaelli, "A new hybrid actuator approach for force-feedback devices," IEEE/RSJ Inter. Conf. on Intelligent Robots and Systems, 4054-4059, Vilamoura, 2012.

13. Rabinow, J., "The magnetic fluid clutch," Transactions of the American Institute of Electrical Engineers, Vol. 67, No. 2, 1308-1315, 1948.
doi:10.1109/T-AIEE.1948.5059821

14. Wu, J., X. Jiang, J. Yao, H. Li, and Z. Li, "Design and modeling of a multi-pole and dual-gap magnetorheological brake with individual currents," Advances in Mechanical Engineering, Vol. 8, 115, 2016.

15. Forte, P., R. Rizzo, A. Musolino, F. Bucchi, and F. Frendo, "A multi-gap magnetorheological clutch with permanent magnet," Smart Materials and Structures, Vol. 24, No. 7, 1-9, 2015.

16. Shiao, Y. and Q. Nguyen, "Development of a multi-pole magnetorheological brake," Smart Materials and Structures, Vol. 22, No. 6, 1-13, 2013.
doi:10.1088/0964-1726/22/6/065008

17. Bucchi, F., P. Forte, F. Frendo, A. Musolino, and R. Rizzo, "A fail-safe magnetorheological clutch excited by permanent magnets for the disengagement of automotive auxiliaries," Journal of Intelligent Material Systems and Structures, Vol. 25, No. 16, 2102-2114, 2014.
doi:10.1177/1045389X13517313

18. Yildirim, G. and S. Genc, "Experimental study on heat transfer of the magnetorheological fluids," Smart Materials and Structures, Vol. 22, No. 8, 1-8, 2013.
doi:10.1088/0964-1726/22/8/085001

19. Frendo, F., R. Rizzo, A. Musolino, F. Bucchi, and P. Forte, "Magnetic FEM design and experimental validation of an innovative fail-safe magnetorheological clutch excited by permanent magnets," IEEE Transactions on Energy Conversion, Vol. 29, No. 3, 628-640, September 2014.
doi:10.1109/TEC.2014.2325964

20. Guo, H. T. and W. H. Liao, "A novel multifunctional rotary actuator with magnetorheological fluid," Smart Materials and Structures, Vol. 21, No. 6, 1-9, 2012.
doi:10.1088/0964-1726/21/6/065012

21. Johnston, G. L., W. C. Kruckemeyer, and R. E. Longhouse, "Passive Magnetorheological clutch,", US Patent, 5848678, 1998.

22. Saito, T. and H. Ikeda, "Development of normally closed type of magnetorheological clutch and its application to safe torque control system of human-collaborative robot," Journal of Intelligent Material Systems and Structures, Vol. 18, No. 12, 1181-1185, December 2007.
doi:10.1177/1045389X07084755

23. Oh, H.-U., "Characteristics of a magnetorheological fluid isolator obtained by permanent magnet arrangement," IOP-Smart Mater. Struct., Vol. 13, 2004.

24. Wiehe, A. and J. Maas, "Magnetorheological actuators with currentless bias torque for automotive applications," Journal of Intelligent Material Systems and Structures, Vol. 21, 1575-1585, 2010.
doi:10.1177/1045389X10385487

25. Yang, B., T. Chen, G. Meng, Z. Feng, J. Jiang, S. Zhang, and Q. Zhou, "Design of a safety escape device based on magnetorheological fluid and permanent magnet," Journal of Intelligent Material Systems and Structures, Vol. 24, 49-60, 2013.
doi:10.1177/1045389X12459589

26. Lai, H. C., R. Rizzo, and A. Musolino, "An electrodynamic/magnetorheological clutch powered by permanent magnets," IEEE Transactions on Magnetics, Vol. 53, No. 2, 1-7, February 2017.

27. Tripodi, E., A. Musolino, M. Raugi, and R. Rizzo, "Stabilization of a permanent-magnet system via null-flux coils," IEEE Trans. on Plasma Science, Vol. 43, No. 5, 1242-1247, May 2015.
doi:10.1109/TPS.2015.2404781

28. Rizzo, R., "An innovative multi-gap clutch based on magneto-rheological fluids and electrodynamic effects: Magnetic design and experimental characterization," Smart Materials and Structures, Vol. 26, 1-11, 2017.

29. L. C. Ltd., www.lord.com/products-and-solutions/magneto-rheological-(mr)/mrproducts.xml.

30. Nguyen, Q. H., S. B. Choi, and N. M. Wereley, "Optimal design magnetorheological valves via a finite element method considering control energy and a time constant," Smart Materials and Structures, Vol. 17, 25024, 2008.
doi:10.1088/0964-1726/17/2/025024

31. Cardelli, E., "A general hysteresis operator for the modeling of vector fields," IEEE Transactions on Magnetics, Vol. 47, No. 8, 20562067, 2011.
doi:10.1109/TMAG.2011.2126589

32. Cardelli, A. F. E. and E. Della Torre, "A general vector hysteresis operator: Extension to the 3-d case," IEEE Transactions on Magnetics, Vol. 46, 3990-4000, December 2010.
doi:10.1109/TMAG.2010.2072933

33. Musolino, A., R. Rizzo, and E. Tripodi, "Tubular linear induction machine as a fast actuator: Analysis and design criteria," Progress In Electromagnetics Research, Vol. 132, 603-619, 2012.
doi:10.2528/PIER12091506

34. Aloini, D., E. Crisostomi, M. Raugi, and R. Rizzo, "Optimal power scheduling in a virtual power plant," IEEE PES International Conference and Exhibition, ISGT, 1-7, 2011.

35. Tripodi, E., A. Musolino, and R. Rizzo, "The double-sided tubular linear induction motor and its possible use in the electromagnetic aircraft launch system," IEEE Transactions on Plasma Science, Vol. 41, No. 5, 1193-1200, May 2013.
doi:10.1109/TPS.2013.2244915

36. Raugi, M., A. Musolino, R. Rizzo, and E. Tripodi, "Modeling of the gyroscopic stabilization in a traveling-wave multipole field electromagnetic launcher via an analytical approach," IEEE Transactions on Plasma Science, Vol. 43, No. 5, 1236-1241, May 2015.
doi:10.1109/TPS.2015.2403774

37. Derbas, H. W., J. M. Williams, A. C. Koenig, and S. D. Pekarek, "A comparison of nodal- and mesh-based magnetic equivalent circuit models," IEEE Transactions on Energy Conversion, Vol. 24, No. 2, 388-396, June 2009.
doi:10.1109/TEC.2008.2002037

38. Tripodi, E., A. Musolino, R. Rizzo, and M. Raugi, "A new predictor-corrector approach for the numerical integration of coupled electromechanical equations," Int. J. Numer. Meth. Eng., Vol. 105, No. 4, 261-285, 2016.
doi:10.1002/nme.4974

39., EFFE v2.00 User Manual, Bathwick Electrical Design Ltd., 2009.

40. Barmada, S., M. Raugi, and M. Tucci, "A multi-objective optimization algorithm based on self-organizing maps applied to wireless power transfer systems," Int. J. Numer. Mod.: Electronic Networks, Devices and Fields, Vol. 30, No. 3-4, 1-17, 2017.

41. Bartalesi, E., F. Bucchi, and R. Squarcini, "Vacuum actuation for axial movement of a magnet in a magnetorheological clutch," EPO Patent Pending, 2014.