1. Watts, C. M., X. Liu, and W. J. Padilla, "Metamaterial electromagnetic wave absorbers," Adv. Mater., 24, 2012. Google Scholar
2. Qin, F. and C. Brosseau, "A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles," Journal of Applied Physics, Vol. 111, 061301, 2012.
doi:10.1063/1.3688435 Google Scholar
3. Fante, R. L. and M. T. McCormack, "Reflection properties of the salisbury screen," IEEE Transactions on Antennas and Propagation, Vol. 36, No. 10, 1988.
doi:10.1109/8.8632 Google Scholar
4. Saville, P., Review of Radar Absorbing Materials, Defence Research & Development Atlantic Dartmouth, 2005.
5. Rozanov, K. N., "Ultimate thickness to bandwidth ratio of radar absorbers," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 8, 1230-4, 2000.
doi:10.1109/8.884491 Google Scholar
6. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402 Google Scholar
7. Kundu, D., A. Mohan, and A. Chakraborty, "Comment on `Wide-angle broadband microwave metamaterial absorber with octave bandwidth'," IET Microwaves, Antennas Propag., Vol. 11, No. 3, 442-443, 2017.
doi:10.1049/iet-map.2016.0743 Google Scholar
8. Panwar, R., S. Puthucheri, V. Agarwala, and D. Singh, "Fractal frequency-selective surface embedded thin broadband microwave absorber coatings using heterogeneous composites," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 8, 2438-2448, 2015.
doi:10.1109/TMTT.2015.2446989 Google Scholar
9. Noor, A. and Z. Hu, "Wideband multilayer Sierpinski carpet array radar absorber," Electronics Letters, Vol. 52, No. 19, 1617-1618, 2016.
doi:10.1049/el.2016.2702 Google Scholar
10. Brosseau, C., P. Quéffélec, and P. Talbot, "Microwave characterization of filled polymer," Journal of Applied Physics, Vol. 89, 2001. Google Scholar
11. Tuncer, E., Y. V. Serdyuk, and S. M. Gubanski, "Dielectric mixtures: Electrical properties and modeling," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 9, No. 5, 809-828, 2002.
doi:10.1109/TDEI.2002.1038664 Google Scholar
12. Cheng, E. M., M. F. Malek, M. Ahmed, K. Y. You, K. Y. Lee, and H. Nornikman, "The use of dielectric mixture equations to analyze the dielectric properties of a mixture of rubber tire dust and rice husks in a microwave absorber," Progress In Electromagnetics Research, Vol. 129, 559-578, 2012.
doi:10.2528/PIER12050312 Google Scholar
13. Koledintseva, M. Y., R. E. DuBroff, and R. W. Schwartz, "A Maxwell Garnett model for dielectric mixtures containing conducting particles at optical frequencies," Progress In Electromagnetics Research, Vol. 63, 223-242, 2006.
doi:10.2528/PIER06052601 Google Scholar
14. Wang, B., J. Wei, Y. Yang, T. Wang, and F. Li, "Investigation on peak frequency of the microwave absorption for carbonyl iron/epoxy resin composite," Journal of Magnetism and Magnetic Materials, Vol. 323, No. 8, 1101-1103, 2011.
doi:10.1016/j.jmmm.2010.12.028 Google Scholar
15. Luukkonen, O., F. Costa, C. R. Simovski, A. Monorchio, and S. A. Tretyakov, "A thin electromagnetic absorber for wide incidence angles and both polarizations," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 10, 3119-3125, 2009.
doi:10.1109/TAP.2009.2028601 Google Scholar
16. Costa, F., A. Monorchio, and G. Manara, "Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 5, 1551-1558, 2010.
doi:10.1109/TAP.2010.2044329 Google Scholar
17. Cheng, Y. and H. Yang, "Design, simulation, and measurement of metamaterial absorber," Journal of Applied Physics, Vol. 108, 034906, 2010.
doi:10.1063/1.3311964 Google Scholar
18. Li, M., H. L. Yang, X. W. Hou, Y. Tian, and D. Y. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIER10071409 Google Scholar
19. Costa, F., S. Genovesi, A. Monorchio, and G. Manara, "A circuit-based model for the interpretation of perfect metamaterial absorbers," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 3, 1201-1209, 2013.
doi:10.1109/TAP.2012.2227923 Google Scholar
20. Chambers, B., "Optimum design of a Salisbury screen radar absorber," Electronics Letters, Vol. 30, No. 16, 1353-1354, 1994.
doi:10.1049/el:19940896 Google Scholar
21. Suryanarayan, C., "Mechanical alloying and milling," Progress in Materials Science, Vol. 46, No. 1, 1-184, 2001.
doi:10.1016/S0079-6425(99)00010-9 Google Scholar
22. Zhu, B., Z.Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with wide incident angle," Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.
doi:10.2528/PIER10011110 Google Scholar
23. Lu, L., S. Qu, H. Ma, F. Yu, S. Xia, Z. Xu, and P. Bai, "A polarization-independent wide-angle dual directional absorption metamaterial absorber," Progress In Electromagnetics Research M, Vol. 27, 91-201, 2012.
doi:10.2528/PIERM12102101 Google Scholar
24. Bhattacharyya, S., "A broadband microwave metamaterial absorber with octave bandwidth," Mapan, 299-307, 2016.
doi:10.1007/s12647-016-0180-6 Google Scholar
25. Brumley, S. A., Evaluation of Microwave Anechoic Chamber Absorbing Materials, Arizona State University, May 1988.