Vol. 63
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2017-11-30
Square Patch-Based Dielectric Microwave Absorber
By
Progress In Electromagnetics Research M, Vol. 63, 13-21, 2018
Abstract
The work presents a simple and novel design approach to extend the bandwidth of existing Dielectric Material Based Microwave Absorber (DMBMA). The design comprises planar square patches of DMBMA placed periodically on a metal-backed FR4 sheet. For demonstration purpose, the DMBMA is synthesized by adding conducting carbon fillers in polyurethane matrix, and its electromagnetic parameters are measured in X-band. A single reflection null is observed in DMBMA owing to λ/4 resonance. In comparison, the bandwidth of 8 GHz (10-18 GHz) is achieved for -10 dB reflection for square patch based DMBMA. The thickness of proposed absorber is 2.75 mm. An additional resonant mode is observed due to capacitive coupling between the square patches. The enhanced bandwidth is attributed to the overlapping of λ/4 resonance and induced coupling mode. A good agreement between the simulated and measured data is observed.
Citation
Amit Bhati Kirankumar Rajshekhar Hiremath Vivek Dixit , "Square Patch-Based Dielectric Microwave Absorber," Progress In Electromagnetics Research M, Vol. 63, 13-21, 2018.
doi:10.2528/PIERM17092402
http://www.jpier.org/PIERM/pier.php?paper=17092402
References

1. Watts, C. M., X. Liu, and W. J. Padilla, "Metamaterial electromagnetic wave absorbers," Adv. Mater., 24, 2012.

2. Qin, F. and C. Brosseau, "A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles," Journal of Applied Physics, Vol. 111, 061301, 2012.
doi:10.1063/1.3688435

3. Fante, R. L. and M. T. McCormack, "Reflection properties of the salisbury screen," IEEE Transactions on Antennas and Propagation, Vol. 36, No. 10, 1988.
doi:10.1109/8.8632

4. Saville, P., Review of Radar Absorbing Materials, Defence Research & Development Atlantic Dartmouth, Canada, 2005.

5. Rozanov, K. N., "Ultimate thickness to bandwidth ratio of radar absorbers," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 8, 1230-4, 2000.
doi:10.1109/8.884491

6. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402

7. Kundu, D., A. Mohan, and A. Chakraborty, "Comment on `Wide-angle broadband microwave metamaterial absorber with octave bandwidth'," IET Microwaves, Antennas Propag., Vol. 11, No. 3, 442-443, 2017.
doi:10.1049/iet-map.2016.0743

8. Panwar, R., S. Puthucheri, V. Agarwala, and D. Singh, "Fractal frequency-selective surface embedded thin broadband microwave absorber coatings using heterogeneous composites," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 8, 2438-2448, 2015.
doi:10.1109/TMTT.2015.2446989

9. Noor, A. and Z. Hu, "Wideband multilayer Sierpinski carpet array radar absorber," Electronics Letters, Vol. 52, No. 19, 1617-1618, 2016.
doi:10.1049/el.2016.2702

10. Brosseau, C., P. Quéffélec, and P. Talbot, "Microwave characterization of filled polymer," Journal of Applied Physics, Vol. 89, 2001.

11. Tuncer, E., Y. V. Serdyuk, and S. M. Gubanski, "Dielectric mixtures: Electrical properties and modeling," IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 9, No. 5, 809-828, 2002.
doi:10.1109/TDEI.2002.1038664

12. Cheng, E. M., M. F. Malek, M. Ahmed, K. Y. You, K. Y. Lee, and H. Nornikman, "The use of dielectric mixture equations to analyze the dielectric properties of a mixture of rubber tire dust and rice husks in a microwave absorber," Progress In Electromagnetics Research, Vol. 129, 559-578, 2012.
doi:10.2528/PIER12050312

13. Koledintseva, M. Y., R. E. DuBroff, and R. W. Schwartz, "A Maxwell Garnett model for dielectric mixtures containing conducting particles at optical frequencies," Progress In Electromagnetics Research, Vol. 63, 223-242, 2006.
doi:10.2528/PIER06052601

14. Wang, B., J. Wei, Y. Yang, T. Wang, and F. Li, "Investigation on peak frequency of the microwave absorption for carbonyl iron/epoxy resin composite," Journal of Magnetism and Magnetic Materials, Vol. 323, No. 8, 1101-1103, 2011.
doi:10.1016/j.jmmm.2010.12.028

15. Luukkonen, O., F. Costa, C. R. Simovski, A. Monorchio, and S. A. Tretyakov, "A thin electromagnetic absorber for wide incidence angles and both polarizations," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 10, 3119-3125, 2009.
doi:10.1109/TAP.2009.2028601

16. Costa, F., A. Monorchio, and G. Manara, "Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 5, 1551-1558, 2010.
doi:10.1109/TAP.2010.2044329

17. Cheng, Y. and H. Yang, "Design, simulation, and measurement of metamaterial absorber," Journal of Applied Physics, Vol. 108, 034906, 2010.
doi:10.1063/1.3311964

18. Li, M., H. L. Yang, X. W. Hou, Y. Tian, and D. Y. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIER10071409

19. Costa, F., S. Genovesi, A. Monorchio, and G. Manara, "A circuit-based model for the interpretation of perfect metamaterial absorbers," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 3, 1201-1209, 2013.
doi:10.1109/TAP.2012.2227923

20. Chambers, B., "Optimum design of a Salisbury screen radar absorber," Electronics Letters, Vol. 30, No. 16, 1353-1354, 1994.
doi:10.1049/el:19940896

21. Suryanarayan, C., "Mechanical alloying and milling," Progress in Materials Science, Vol. 46, No. 1, 1-184, 2001.
doi:10.1016/S0079-6425(99)00010-9

22. Zhu, B., Z.Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with wide incident angle," Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.
doi:10.2528/PIER10011110

23. Lu, L., S. Qu, H. Ma, F. Yu, S. Xia, Z. Xu, and P. Bai, "A polarization-independent wide-angle dual directional absorption metamaterial absorber," Progress In Electromagnetics Research M, Vol. 27, 91-201, 2012.
doi:10.2528/PIERM12102101

24. Bhattacharyya, S., "A broadband microwave metamaterial absorber with octave bandwidth," Mapan, 299-307, 2016.
doi:10.1007/s12647-016-0180-6

25. Brumley, S. A., Evaluation of Microwave Anechoic Chamber Absorbing Materials, Arizona State University, May 1988.