Vol. 64
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-02-08
Dual-Function MIMO Radar-Communications Employing Frequency-Hopping Chirp Waveforms
By
Progress In Electromagnetics Research M, Vol. 64, 135-146, 2018
Abstract
A dual-function radar-communication system is a technology equipped with a joint platform that enables performing a radar function (primary function) and a communication function (secondary function) simultaneously. This duality has become increasingly necessary, since it alleviates congestion and ease competition over frequency spectrum. In this paper, we put forward a technique for information embedding, specifically to multiple-input multiple-output (MIMO) radar employing frequency-hopping chirp (FHC) waveforms. We use FHC codes to implement the primary function (i.e., MIMO radar operation), while embedding communication symbol, for example, phase shift keying (PSK), in each FHC code for secondary function (i.e., communication operation). We show that the communication operation does not interfere with the MIMO radar function. In addition, standard ratio testing is used at the communication receiver to detect the embedded PSK symbols. Furthermore, the waveform designed has the superiorities of high range resolution, constant time domain and almost constant frequency-domain modulus, large time-bandwidth product, and low time-delay and frequency-shift correlation peaks. Numerical results show that: 1) data rates can be accurately detected, and thus, several Mbps are achieved in the system; 2) the SER performance characteristics are significantly improved; 3) the orthogonal frequency-hopping chirp waveforms achieve better range and Doppler resolution with reduced sidelobes levels compared to that of conventional frequency hopping waveforms.
Citation
Shaddrack Yaw Nusenu Wen-Qin Wang Hui Chen , "Dual-Function MIMO Radar-Communications Employing Frequency-Hopping Chirp Waveforms," Progress In Electromagnetics Research M, Vol. 64, 135-146, 2018.
doi:10.2528/PIERM17101703
http://www.jpier.org/PIERM/pier.php?paper=17101703
References

1. Griffiths, H., S. Blunt, L. Chen, and L. Savy, "Challenge problems in spectrum engineering and waveform diversity," Proc. IEEE Radar Conf., 1-5, Ottawa, Canada, Apr.-May 2013.

2. Baylis, C., M. Fellows, L. Cohen, and R. J. Marks, "Solving the spectrum crisis: Intelligent, reconfigurable microwave transmitter amplifiers for cognitive radar," IEEE Microwave Magazine, Vol. 15, No. 5, 94-107, Jul.-Aug. 2014.
doi:10.1109/MMM.2014.2321253

3. Griffiths, H., L. Cohen, S. Watts, E. Mokole, C. Baker, M. Wicks, and S. Blunt, "Radar spectrum engineering and management: Technical and regulatory issues," Proc. IEEE, Vol. 103, No. 1, 85-102, Jan. 2015.
doi:10.1109/JPROC.2014.2365517

4. Paisana, F., N. Marchetti, and L. A. DaSilva, "Radar, TV and cellular bands: Which spectrum access techniques for which bands?," IEEE Commun. Surveys and Tutorials, Vol. 16, No. 3, 1193-1220, Third Quarter, 2014.
doi:10.1109/SURV.2014.031914.00078

5. Deng, H. and B. Himed, "Interference mitigation processing for spectrum-sharing between radar and wireless communications systems," IEEE Trans. Aerospace and Electronic Systems, Vol. 49, No. 3, 1911-1919, Jul. 2013.
doi:10.1109/TAES.2013.6558027

6. Bliss, D. W., "Cooperative radar and communications signaling: The estimation and information theory odd couple," Proc. IEEE Radar Conf., 50-55, Cincinnati, OH, May 2014.

7. Geng, Z., H. Deng, and B. Himed, "Adaptive radar beamforming for interference mitigation in radar-wireless spectrum sharing," IEEE Signal Process. Lett., Vol. 22, No. 4, 484-488, Apr. 2015.
doi:10.1109/LSP.2014.2363585

8. Hayvaci, H. T. and B. Tavli, "Spectrum sharing in radar and wireless communication systems: A review," Proc. Int. Conf. Electromagnetics in Advanced Applications, 810-813, Palm Beach, Aruba, Aug. 2014.

9. Guerci, J. R., R. M. Guerci, A. Lackpour, and D. Moskowitz, "Joint design and operation of shared spectrum access for radar and communications," Proc. IEEE Int. Radar Conf., 0761-0766, Arlington, VA, May 2015.

10. Khawar, A., A. Abdelhadi, and C. Clancy, "Target detection performance of spectrum sharing MIMO radars," IEEE Sensors Journal, Vol. 15, No. 9, 4928-4940, Sep. 2015.
doi:10.1109/JSEN.2015.2424393

11. Wang, L., J. McGeehan, C. Williams, and A. Doufexi, "Application of cooperative sensing in radar-communications coexistence," IET Communications, Vol. 2, No. 6, 856-868, Jul. 2008.
doi:10.1049/iet-com:20070403

12. Huang, K. W., M. Bica, U. Mitra, and V. Koivunen, "Radar waveform design in spectrum sharing environment: Coexistence and cognition," Proc. IEEE Radar Conf., 1698-1703, Arlington, VA, May 2015.

13. Surender, S. C., R. M. Narayanan, and C. R. Das, "Performance analysis of communications and radar coexistence in a covert UWB OSA system," Proc. IEEE Global Commun. Conf., 1-5, Miami, FL, Dec. 2010.

14. Sit, Y. L., C. Sturm, L. Reichardt, T. Zwick, and W. Wiesbeck, "The OFDM joint radar-communication system: An overview," Proc. Int. Conf. Advances in Satellite and Space Commun., 69-74, Budapest, Hungary, Apr. 2011.

15. Blunt, S. D., M. R. Cook, and J. Stiles, "Embedding information into radar emissions via waveform implementation," Proc. Int. Waveform Diversity and Design Conf., 8-13, Niagara Falls, Canada, Aug. 2010.

16. Euziere, J., R. Guinvarch, M. Lesturgie, B. Uguen, and R. Gillard, "Dual function radar communication time-modulated array," Proc. Int. Radar Conf., Lille, France, Oct. 2014.

17. Hassanien, A., M. G. Amin, Y. D. Zhang, and F. Ahmad, "Dual function radar-communications using phase-rotational invariance," Proc. European Signal Processing Conf., 1346-1350, Nice, France, Aug.-Sep. 2015.

18. Hassanien, A., M. G. Amin, Y. D. Zhang, and F. Ahmad, "Dual-function radar-communications: Information embedding using sidelobe control and waveform diversity," IEEE Trans. Signal Processing, Vol. 64, No. 8, 2168-2181, Apr. 2016.
doi:10.1109/TSP.2015.2505667

19. Hassanien, A., M. G. Amin, Y. D. Zhang, and F. Ahmad, "Efficient sidelobe ASK based Dual-Function radar-communications," SPIE Defense and Security, Radar Sensor Technology Conf., Baltimore, MD, Apr. 2016.

20. Hassanien, A., M. G. Amin, and Y. D. Zhang, "Computationally efficient beampattern synthesis for dual-function radar-communications," SPIE Defense and Security, Radar Sensor Technology Conf., Baltimore, MD, Apr. 2016.

21. Hassanien, A., M. G. Amin, Y. D. Zhang, and F. Ahmad, "Signaling strategies for dual-function radar-communications: An overview," IEEE Aerospace and Electronic Systems Magazine, Vol. 31, No. 10, 36-45, Oct. 2016.
doi:10.1109/MAES.2016.150225

22. Hassanien, A., M. G. Amin, Y. D. Zhang, and F. Ahmad, "Phase modulation based dual-function radar-communications," IET Radar, Sonar and Navigations, Vol. 10, No. 8, 1411-1421, Oct. 2016.
doi:10.1049/iet-rsn.2015.0484

23. Hassanien, A., B. Himed, and B. D. Rigling, "A dual-function MIMO radar-communications system using frequency-hopping waveforms," Proc. IEEE Radar Conf., 1721-1725, May 8-12, 2017.

24. Hassanien, A., M. G. Amin, Y. Zhang, and B. Himed, "A dual-function MIMO radar-communications system using PSK modulation," Proc. of the European Signal Processing Conf., (EUSIPCO), Budapest, Hungary, Aug. 2016.

25. BouDaher, E., A. Hassanien, E. Aboutanios, and M. G. Amin, "Towards a dual-function MIMO radar-communication system," Proc. IEEE Radar Conf., Philadelphia, PA, May 2016.

26. Wang, W. Q., "MIMO SAR OFDM chirp waveform diversity design with random matrix modulation," IEEE Trans. on Geoscience and Remote Sensing, Vol. 53, No. 3, 1615-1625, Mar. 2015.
doi:10.1109/TGRS.2014.2346478

27. Friedlander, B., "On the relationship between MIMO and SIMO radars," IEEE Trans. on Signal Processing, Vol. 57, No. 1, 394-398, Jan. 2009.
doi:10.1109/TSP.2008.2007106

28. Welstead, S., "Characterization of diversity approaches for LFM stretchprocessed waveforms," Proceedings of the International Waveform Diversity and Design Conf., 418-422, Pisa, Jun. 2007.

29. Kim, J. H., M. Younis, A. Moreira, and W. Wiesbeck, "A novel OFDM chirp waveform scheme for use of multiple transmitters in SAR," IEEE Geoscience and Remote Sensing Letters, Vol. 10, No. 3, 568-572, May 2013.
doi:10.1109/LGRS.2012.2213577

30. Wang, W. Q., "MIMO SAR chirp modulation diversity waveform design," IEEE Geoscience and Remote Sensing Letters, Vol. 11, No. 9, 1644-1648, Sep. 2014.
doi:10.1109/LGRS.2014.2303974

31. Skolnik, M. I., Introduction to Radar Systems, 3rd Ed., McGraw-Hill, New York, NY, 2001.

32. Song, X., S. Zhou, and P. Willett, "Reducing the waveform cross correlation of MIMO radar with spacetime coding," IEEE Trans. on Signal Processing, Vol. 58, No. 8, 4213-4224, Aug. 2010.
doi:10.1109/TSP.2010.2048207

33. Patton, L., C. Bryant, and B. Himed, "Radar-centric design of waveforms with disjoint spectral support," Proc. IEEE Radar Conf., 1106-1110, May 2012.

34. Aubry, A., A. De Maio, M. Piezzo, and A. Farina, "Radar waveform design in a spectrally crowded environment via nonconvex quadratic optimization," IEEE Trans. Aerospace and Electronic Systems, Vol. 50, No. 2, 1138-1152, Apr. 2014.
doi:10.1109/TAES.2014.120731

35. Patton, L. K. and B. D. Rigling, "Modulus constraints in adaptive radar waveform design," Proc. IEEE Radar Conf., 1-6, Rome, May 2008.

36. Han, K. and A. Nehorai, "Jointly optimal design for MIMO radar frequency-hopping waveforms using game theory," IEEE Trans. Aerospace and Electronic Systems, Vol. 52, No. 2, 809-820, Apr. 2016.
doi:10.1109/TAES.2015.140408

37. Chen, C. Y. and P. Vaidyanathan, "MIMO radar ambiguity properties and optimizaton using frequency-hopping waveforms," IEEE Trans. on Signal Processing, Vol. 56, 5926-5936, Dec. 2008.
doi:10.1109/TSP.2008.929658

38. Levanon, N. and E. Mozeson, Radar Signals, Wiley-IEEE Press, New York, NY, USA, 2004.
doi:10.1002/0471663085

39. San Antonio, G., D. R. Fuhrmann, and F. C. Robey, "MIMO radar ambiguity functions," IEEE Journal of Selected Topics on Signal Processing, Vol. 1, No. 1, 167-177, Jun. 2007.
doi:10.1109/JSTSP.2007.897058

40. Chen, C. Y. and P. Vaidyanathan, "Properties of the MIMO radar ambiguity function," Proc. IEEE International Conf. on Acoustics, Speech and Signal Processing (ICASSP), 2309-2312, Honolulu, HI, USA, Apr. 2008.